Skip to main content
Log in

Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m2/g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pHi) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou-Mesalam MM (2000) Adsorption kinetics of copper, zinc, cadmium and nickel ions on synthesized silico-antimonate ion exchanger. Colloid Surface A 225:85–94. doi:10.1016/S0927-7757(03)00191-2

    Article  Google Scholar 

  • Adhoum N, Monser L (2004) Removal of phthalate on modified activated carbon: application to the treatment of industrial wastewater. Separ Sci Technol 38(3):233–239. doi:10.1016/j.seppur.2003.11.011

    CAS  Google Scholar 

  • Al-Muhtaseb SA, Ritter JA (1999) Roles of surface heterogeneity and lateral interactions on the isosteric heat of adsorption and adsorbed phase heat capacity. J Phys Chem B 103:2467–2479. doi:10.1021/jp984110s

    Article  CAS  Google Scholar 

  • Anbia M, Salehi S (2012) Synthesis of polyelectrolyte-modified ordered nanoporous carbon for removal of aromatic organic acids from purified terephthalic acid wastewater. Chem Eng Res Des 90:975–983. doi:10.1016/j.cherd.2011.10.010

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association), AWWA (American Water Works Association), WPCF (Water Pollution Control Federation) (2003) Standard methods for the examination of water and wastewater. APHA, Washington, DC

    Google Scholar 

  • Ayranci A, Duman O (2006) Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. J Hazard Mater 136:542–552. doi:10.1016/j.jhazmat.2005.12.029

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Haldenda PH (1951) The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi:10.1021/ja01145a126

    Article  CAS  Google Scholar 

  • Boehm HP (1966) Chemical identification of functional groups. In: Eley DD (ed) Advances in catalysis. Academic Press, New York

    Google Scholar 

  • Boyd GE, Adamson AW, Meyers LS (1947) The exchange adsorption of ions from aqueous solution by organic zeolites. II Kinetics J Am Chem Soc 69:2836–2848. doi:10.1021/ja01203a066

    Article  CAS  Google Scholar 

  • Caliskan Ö, Doğan Ilgun A, Yilmazi M, Banu Yener H, Fehime Özkan S, Helvaci SS (2013) Adsorption behavior of terephthalic acid on TiO2 nano particles synthesized by thermal hydrolysis method. Digital proceeding of the ICOEST’2013, Cappadocia. www.josunas.org/login/index.php/josunas/article/download/272/224

  • Chen CY, Chen CC, Chung YC (2007) Removal of phthalate esters by α-cyclodextrin-linked chitosan bead. Bioresour Technol 98(13):2578–2583. doi:10.1016/j.biortech.2006.09.009

    Article  CAS  Google Scholar 

  • Chen CY, Chung YC (2006) Removal of phthalate esters from aqueous solution by chitosan bead. J Environ Sci Heal A 41(2):235–248. doi:10.1080/10934520500354573

    Article  CAS  Google Scholar 

  • Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EMR (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in portland cement and lime mortars. Cem Concr Compos 30:410–418. doi:10.1016/j.cemconcomp.2008.01.001

    Article  CAS  Google Scholar 

  • Dulazi AA, Liu H (2011) Removal of phthalate esters from water using immobilized lipase on chitosan beads. Environ Technol 32(13):1443–1451. doi:10.1080/09593330.2010.538932

    Article  CAS  Google Scholar 

  • Garg A, Mishra IM, Chand S (2010) Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor. J Hazard Mater 180(1–3):158–164. doi:10.1016/j.jhazmat.2010.04.008

    Article  CAS  Google Scholar 

  • Gilarranz MA, Rodriguez F, Oliet M, Reveng JA (1998) Acid precipitation and purification of wheat straw lignin. Separ Sci Technol 33(9):1359–1377. doi:10.1080/01496399808544988

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. London

  • Haghseresht F, Nouri S, Finnerty JJ, Lu GQ (2002) Effects of surface chemistry on aromatic compound adsorption from dilute aqueous solutions by activated carbon. J Phys Chem B 106(42):10935–10943. doi:10.1021/jp025522a

    Article  CAS  Google Scholar 

  • Harkins WD, Jura G (1944) Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J Am Chem Soc 66:1366–1373. doi:10.1021/ja01236a048

    Article  CAS  Google Scholar 

  • Hauser R, Calafat AM (2005) Phthalates and human health. Occup Environ Med 62:806–818. doi:10.1136/oem.2004.017590

    Article  CAS  Google Scholar 

  • Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210:623–634. doi:10.1016/j.ijheh.2007.07.011

    Article  CAS  Google Scholar 

  • Jia YF, Xiao B, Thomas KM (2002) Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir 18(2):470–478. doi:10.1021/la011161z

    Article  CAS  Google Scholar 

  • Joung JY, Lee HW, Choi H, Lee MW, Park JM (2009) Influences of organic loading disturbances on the performance of an aerobic filter process to treat purified terephthalic acid wastewater. Bioresour Technol 100:2457–2461. doi:10.1016/j.biortech.2008.11.034

    Article  CAS  Google Scholar 

  • Karthik M, Dafale NP, Pathe PT, Nandy T (2008) Biodegradability enhancement of purified terephthalic acid wastewater by coagulation—flocculation process as pretreatment. J Hazard Mater 154:721–730. doi:10.1016/j.jhazmat.2007.10.085

    Article  CAS  Google Scholar 

  • Kleerebezem R, Hulshoff Pol LW, Lettinga G (1999a) Anaerobic biodegradability of phthalic acid isomers and related compounds. Biodegradation 10(1):63–73. doi:10.1023/A:1008321015498

    Article  CAS  Google Scholar 

  • Kleerebezem R, Hulshoff Pol LW, Lettinga G (1999b) The role of benzoate in anaerobic degradation of terephthalate. Appl Environ Microbiol 65(3):1161–1167

    CAS  Google Scholar 

  • Lataye DH, Mishra IM, Mall ID (2006) Removal of pyridine from aqueous solution by adsorption on bagasse fly ash. Ind Eng Chem Res 45:3934. doi:10.1021/ie051315w

    Article  CAS  Google Scholar 

  • Lataye DH, Mishra IM, Mall ID (2008) Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): parametric, kinetic, equilibrium and thermodynamic aspects. J Hazard Mater 154:858–870. doi:10.1016/j.jhazmat.2007.10.111

    Article  CAS  Google Scholar 

  • Li A, Zhang Q, Zhang G, Chen J, Fei Z, Liu F (2002) Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. Chemosphere 47:981–989. doi:10.1016/S0045-6535(01)00222-3

    Article  CAS  Google Scholar 

  • Long C, Lu J, Li A, Zhang Q (2009) Removal of endocrine disrupting chemicals from aqueous phase using spherical microporous carbon prepared from waste polymeric exchanger. Water Sci Technol 60(6):1607–1614. doi:10.2166/wst.2009.495

    Article  CAS  Google Scholar 

  • Lyche JL, Gutleb AC, Bergman A, Eriksen GS, Murk ATJ, Ropstad E, Saunders M, Skaare JU (2009) Reproductive and developmental toxicity of phthalates. J Toxicol Environ Heal B 12:225–249. doi:10.1080/10937400903094091

    Article  CAS  Google Scholar 

  • Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/ mimosa tannin/ sulfuric acid system. Appl Surf Sci 199:83–89. doi:10.1016/S0169-4332(02)00546-9

    Article  CAS  Google Scholar 

  • Mattson JS, Mark Jr HB (1971) Activated carbon: surface chemistry and adsorption from solution. New York

  • Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Phil Trans R Soc B 364:2097–2113. doi:10.1098/rstb.2008.0268

    Article  CAS  Google Scholar 

  • Murzin D, Salami T (2005) Chemical kinetics. Elsevier, Amsterdam

    Google Scholar 

  • Nevskaia DM, Castillejos-Lopez E, Guerrero-Ruiz A, Munoz V (2004) Effects of the surface chemistry of carbon materials on the adsorption of phenol–aniline mixtures from water. Carbon 42(3):653–665. doi:10.1016/j.carbon.2004.01.007

    Article  CAS  Google Scholar 

  • Park TJ, Lima JS, Lee YW, Kim SH (2003) Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process. J Supercrit Fluid 26:201–213. doi:10.1016/S0896-8446(02)00161-4

    Article  CAS  Google Scholar 

  • Pillai KC, Kwon TO, Moon IS (2009) Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: direct versus indirect ozonation reactions. Appl Catal B 91:319–328. doi:10.1016/j.apcatb.2009.05.040

    Article  Google Scholar 

  • Pophali GR, Khan R, Dhodapkar RS, Nandy T, Devotta S (2007) Anaerobic–aerobic treatment of purified terephthalic acid (PTA) effluent: a techno-economic alternative to two-stage aerobic process. J Environ Manag 85:1024–1033. doi:10.1016/j.jenvman.2006.11.016

    Article  CAS  Google Scholar 

  • Rivas FJ, Beltr’an F, Carvalho F, Acedo B, Gimeno O (2004) Stabilized leachates: sequential coagulation–flocculation + chemical oxidation process. J Hazard Mater B116:95–102. doi:10.1016/j.jhazmat.2004.07.022

    Article  Google Scholar 

  • Shafaei AM, Nikazar M, Arami M (2010) Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study. Desalination 252:8–16. doi:10.1016/j.desal.2009.11.008

    Article  CAS  Google Scholar 

  • Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC Press. ISBN 9780849324635

  • Srivastava VC, Mall ID, Mishra IM (2006b) Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J Hazard Mater 134:257–267. doi:10.1016/j.jhazmat.2005.11.052

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2007) Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem Eng J 132:267–278. doi:10.1016/j.cej.2007.01.007

    Article  CAS  Google Scholar 

  • Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006a) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloid Surface A 272:89–104. doi:10.1016/j.colsurfa.2005.07.016

    Article  CAS  Google Scholar 

  • Stuart BH (2004) Infrared spectroscopy: fundamentals and applications, John Wile

  • Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108:177–184. doi:10.1016/j.envres.2008.08.007

    Article  CAS  Google Scholar 

  • Thiruvenkatachari R, Kwon TO, Jun JC, Balaji S, Matheswaran M, Shik Moon I (2007) Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA). J Hazard Mater 142:308–314. doi:10.1016/j.jhazmat.2006.08.023

    Article  CAS  Google Scholar 

  • Tsang PK, Fang ZQ, Liu H, Chen X (2008) Kinetics of adsorption of di-n-butyl phthalate (DBP) by four different granule-activated carbons. Front Chem Chin 23(3):288–293. doi:10.1007/s11458-008-0064-6

    Article  Google Scholar 

  • Verma S, Prasad B, Mishra IM (2010) Pretreatment of petrochemical wastewater by coagulation and flocculation and the sludge characteristics. J Hazard Mater 178:1055–1064. doi:10.1016/j.jhazmat.2010.02.047

    Article  CAS  Google Scholar 

  • Verma S, Prasad B, Mishra IM (2014a) Treatment of petrochemical wastewater by acid precipitation and carbon adsorption. J Hazard Toxic Radioact Waste 18(3):04014013. doi:10.1061/(ASCE)HZ.2153-5515.0000219

    Article  Google Scholar 

  • Verma S, Prasad B, Mishra IM (2014b) Adsorption kinetics and thermodynamics of COD removal of acid treated petrochemical wastewater by using granular activated carbon. Separ Sci Technol 49(7):1067–1075

    Article  CAS  Google Scholar 

  • Vermeulen T (1953) Theory for irreversible and constant pattern solid diffusion. Ind Eng Chem 45(8):1664–1670. doi:10.1021/ie50524a025

    Article  CAS  Google Scholar 

  • Wen YZ, Tong SP, Zheng KF, Wang LL, Lv JZ, Lin J (2006) Removal of terephthalic acid in alkalized wastewater by ferric chloride. J Hazard Mater 138:169–172. doi:10.1016/j.jhazmat.2006.05.070

    Article  CAS  Google Scholar 

  • Wittcoff HA, Reuben BG, Plotkin JS (2004) Industrial organic chemicals, 2nd edn. Wiley-Interscience

  • Worathanakul P, Payubnop W, Muangpet A (2009) Characterization for post-treatment effect of bagasse ash for silica extraction. World Acad Sci Eng Technol 56:360–362

    Google Scholar 

  • Xu Z, Zhang W, Pan B, Lv L, Jiang Z (2011) Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin. Environ Technol 32(2):145–153. doi:10.1080/09593330.2010.490854

    Article  Google Scholar 

  • Zhang Z, Ma L, Zhang XX, Li W, Zhang Y, Wu B, Yang L, Cheng S (2010) Genomic expression profiles in liver of mice exposed to purified terephthalic acid manufacturing wastewater. J Hazard Mater 181:1121–1126. doi:10.1016/j.jhazmat.2010.05.131

    Article  CAS  Google Scholar 

  • Zhuravlev LT (1987) Concentration of hydroxyl groups on the surface of amorphous Silicas. Langmuir 1987(3):316–318. doi:10.1021/la00075a004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Verma.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Prasad, B. & Mishra, I.M. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA). Environ Sci Pollut Res 24, 1953–1966 (2017). https://doi.org/10.1007/s11356-016-7986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7986-1

Keywords

Navigation