Skip to main content
Log in

Polycyclic aromatic hydrocarbons and trace metals in mosque’s carpet dust of Riyadh, Saudi Arabia, and their health risk implications

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main objectives of this work were to identify and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in carpet dust samples from various mosques of the city of Riyadh and to assess the health risks associated with the exposure to these pollutants. Therefore, 31 samples of mosque’s carpet dust from Riyadh were collected. The results showed that 14 PAHs were present in the dust samples with concentrations ranged from 90 to 22,146 ng g−1 (mean = 4096 ± 4277 ng g−1) where low molecular weight compounds were dominant. The presence of PAHs were in the order of naphthalene > chrysene and benzo(b)fluoranthene > benzo(a)pyrene > acenaphthene and benzo(k)fluoranthene > pyrene and the absence of indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene. The diagnostic ratio coupled with principle component analysis (PCA) revealed mix sources of petrogenic from traffic, stack emission, and pyrogenic inputs from essence and perfumed wood burning. Trace metals were significant in the dust samples, and their concentrations decrease in the order of Zn, Mn, Cu, Cr, Pb, Ni, and V where Zn being the highest (94.4 ± 91.5 μg g−1) and indium was the lowest (1.9 ± 9.3 μg g−1). The trace metals were major in southern and central parts of Riyadh and followed the order of central Riyadh > southern Riyadh > western Riyadh > eastern Riyadh > northern Riyadh. Estimated risk based on the total PAHs was found to be 4.30 × 10−11 for adult and 1.56 × 10−11 for children. Elemental non-cancer risk for adults ranged from 7.9 × 10−4 for Co to 7.58 × 10−1 for Li and for children ranged from 3.70 × 10−3 for Co to 3.54 for Li. Policy implication and mitigations of PAHs in Riyadh and Saudi Arabia were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abt E, Suh HH, Allen G, Koutrakis P (2000) Characterization of indoor particle sources: a study conducted in the metropolitan Boston area. Environmental Health Perspective 108:35–44

    Article  CAS  Google Scholar 

  • Afshari A, Matson U, Ekberg LE (2005) Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 15:141–150

    Article  CAS  Google Scholar 

  • Al-Ajmi FF (2010) Thermal comfort in air-conditioned mosques in the dry desert climate. Build Environ 45:2407–2413

    Article  Google Scholar 

  • Al-Dabbous AN, Khan AR, Al-Rashidi MS, Awadi L (2013) Carbon dioxide and volatile organic compounds levels in mosque in hot arid climate. Indoor Built Environ 22:456–464

    Article  Google Scholar 

  • Al-Homoud MS, Abdou AA, Budaiwi IM (2009) Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates. Energy and Buildings 41:607–614

    Article  Google Scholar 

  • Ali N, Van den Eede N, Dirtu AC, Neels H, Covaci A (2012) Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan. Indoor Air 22:200–211

    Article  CAS  Google Scholar 

  • Anderson MJ, Daly EP, Miller SL, Milford JB (2002) Source apportionment of exposures to volatile organic compounds: II. Application of receptor models to TEAM study data, Atmos. Environ 36:3643–3658

    CAS  Google Scholar 

  • Farahat A, El-Askary H, Al-Shaibani A (2014) Study of aerosols’ characteristics and dynamics over the Kingdom of Saudi Arabia using a multisensor approach combined with ground observations. Advances in Meteorology, Article ID 247531, in press

  • Alharbi B, Shareef M, Husain T (2015) Study of chemical characteristics of particulate matter concentrations in Riyadh, Saudi Arabia. Atmospheric Pollution Research 6:88–98

    Article  CAS  Google Scholar 

  • Branis M, Safranek J, Hytychova A (2009) Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school. Build and Environ 44:1246–1252

    Article  Google Scholar 

  • CDSI (Central Department of Statistics & Information) (2013) Statistical Yearbook 47, Riyadh, Saudi Arabia. Retrieved 15 November

  • Chester R, Nimmo M, Preston MR (1999) The trace metal chemistry of atmospheric dry deposition samples collected at cap Ferrat: a coastal site in the western Mediterranean. Mar Chem 68:15–30

    Article  CAS  Google Scholar 

  • Chuang JC, Callahan PJ, Lyu CW, Wilson NK (1999) Polycyclic aromatic hydrocarbon exposures of children in low-income families. J Expo Anal Environ Epidemiol 9:85–98

    Article  CAS  Google Scholar 

  • Corsi RL, Siegel JA, Chiang C (2008) Particle resuspension during the use of vacuum cleaners on residential carpet. Journal of Occupational and Environmental Hygiene 5:232–238

    Article  Google Scholar 

  • Councell TB, Duchenfield K, Landa ER, Callender E (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38:4206–4214

    Article  CAS  Google Scholar 

  • Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128:412–425

    CAS  Google Scholar 

  • de Kok TMCM, Hogervorst JGF, Kleinjans JCS, Briede JJ (2004) Radicals in the church. Eur Respir J 24:1069–1070

    Article  Google Scholar 

  • de Santis F, Allegrini I, Fazio MC, Pasella D (1996) Characterization of indoor air quality in the Church of San Luigi Dei Francesi, Rome, Italy. Int J Environ Anal Chem 64:71–81

    Article  Google Scholar 

  • Dunagan SC, Robin ED, Ruthann AR, Julia GB (2011) Toxics use reduction in the home: lessons learned from household exposure studies. J Clean Product 19:438–444

    Article  CAS  Google Scholar 

  • Dzomba P, Chayamiti T, Togarepi E (2012) Heavy Metal Content of Selected Raw Medicinal PlantMaterials: Implication for Patient Health Bull Environ Pharmacol Life Sci 1:28–33

    Google Scholar 

  • El-Mubarak AH, Rushdi AI, Al-Mutlaq KF, Bazeyad AY, Simonich SL, Simoneit BR (2014) Identification and source apportionment of polycyclic aromatic hydrocarbons in ambient air particulate matter of Riyadh, Saudi Arabia. Environ Sci Pollut Res 21:558–567

    Article  CAS  Google Scholar 

  • El-Mubarak AH, Rushdi AI, Al-Mutlaq KF, Bazeyad AY, Simonich SLM, Simoneit BRT (2015) Occurrence of high levels of persistent organic pollutants (POPs) in particulate matter of the ambient air of Riyadh, Saudi Arabia. Arabian J for Sci and Eng 40:1–92

    Article  Google Scholar 

  • Fang GC, Chang CN, Wu YS, Yang CJ, Chang SC, Yang IL (2002) Suspended particulate variations and mass size distributions of incense burning at Tzu Yun yen temple in Taiwan. Taichung Sci Total Environ 299:79–87

    Article  CAS  Google Scholar 

  • Ferro AR, Kopperud RJ, Hildemann LM (2004) Source strengths for indoor human activities that re-suspended particulate matter. Environ Sci Technol 38:1759–1764

    Article  CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JNJ (2000) Chemistry of the upper and lower atmosphere. Academic Press, San Diego

    Google Scholar 

  • Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, Kiranoglu M, Twardella D (2008) Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos Environ 42:6597–6605

    Article  CAS  Google Scholar 

  • Gevao B, Al-Bahloul M, Zafar J, Al-Matrouk K, Helaleh M (2007) Polycyclic aromatic hydrocarbons in indoor air and dust in Kuwait: implications for sources and non-dietary human exposure. Arch Environ Contam Toxicol 53:503–512

    Article  CAS  Google Scholar 

  • Hoffman LG (1972) Trace metals in Hawaiian marine atmosphere. J Geophysic Res 77:5322–5329

    Article  CAS  Google Scholar 

  • Hobson A, Noah S, Sterling D, Racette B (2011) Estimation of particulate mass and manganese exposure levels among welders. The Annals of Occupational Hygiene 55:113–125

    Article  CAS  Google Scholar 

  • Kang Y, Cheung KC, Wong MH (2011) Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environ Int 37:637–643

    Article  CAS  Google Scholar 

  • Kang Y, Dingding S, Ning L, Gelin Y, Zhang Q, Lixuan Z, Jiwen L, Wenfeng Z (2015) Cancer risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) via indoor and outdoor dust based on probit model. Environ. Sci Pollut Res 22:3451–3456

    Article  CAS  Google Scholar 

  • Katsoyiannis A, Sweetman AJ, Jones KC (2011) PAH molecular diagnostic ratios applied to atmospheric sources: a critical evaluation using two decades of source inventory and air concentration data from the UK. Environ Sci Technol. doi:10.1021/es202277u

    Google Scholar 

  • Li X, Yang Y, Xu X, Xu C, Hong J (2015) Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J Clean Product doi. doi:10.1016/j.jclepro.2015.05.077

    Google Scholar 

  • Lin TC, Chang FH, Hsieh JH, Chao HR, Chao MR (2001) Environmental exposure to polycyclic aromatic hydrocarbons and total suspended particulates in a Taiwanese temple Bull Environ Contam Toxicol 67:332–338

    CAS  Google Scholar 

  • Long CM, Suh HH, Koutrakis P (2000) Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manage Assoc 50:1236–1250

    Article  CAS  Google Scholar 

  • Loupa G, Karageorgos E, Rapsomanikis S (2010) Potential effects of particulate matter from combustion during services on human health and on works of art in medieval churches in Cyprus. Environ Poll 158:2946–2953

    Article  CAS  Google Scholar 

  • Lung SC, Kao MC, Hu SC (2003) Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions. Ind Air 13:194–199

    Article  CAS  Google Scholar 

  • Maertens RM, Yang XF, Zhu JP, Gagne RW, Douglas GR, White PA (2008) Mutagenic and carcinogenic hazards of settled house dust I: polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ Sci Technol 42:1747–1753

    Article  CAS  Google Scholar 

  • Maertens RM, Bailey J, White PA (2004) The mutagenic hazards of settled house dust: a review. Mutant Res 567:401–425

    Article  CAS  Google Scholar 

  • Montoya LD, Hildemann LM (2001) Evolution of the mass distribution of re-suspended cat allergen (fel d 1) indoors following a disturbance. Atmos Environ 35:859–866

    Article  CAS  Google Scholar 

  • Montoya LD, Hildemann LM (2005) Size distributions and height variations of airborne particulate matter and cat allergen indoors immediately following dust-disturbing activities. J Aerosol Sci 36:735–749

    Article  CAS  Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Peng C, Chen W, Liao X, Wang M, Ouyang Z, Jiao W, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808

    Article  CAS  Google Scholar 

  • Rushdi A, Al Mutlaq K, Al-Otaibi M, El-Mubarak A, Simoneit B (2013) Air quality and elemental enrichment factors of aerosol particulate matter in Riyadh City, Saudi Arabia. Arab J Geosci 6:585–599

    Article  CAS  Google Scholar 

  • Saliba NA, Kouyoumdjian H, Roumie M (2007) Effect of local and long-range transport emissions on the elemental composition of PM10-2.5 and PM2.5 in Beirut. Atmos Environ 41:6497–6509

    Article  CAS  Google Scholar 

  • Shin H-M, Mckone TE, Deborah H (2012) Intake fraction for the indoor environment: a tool for prioritizing indoor chemical sources. Environ Sci Technol 46:10063–10072

    CAS  Google Scholar 

  • Shin H-M, Mckone TE, Tulve NS, Clifton MS, Bennett DH (2013) Indoor residence times of semivolatile organic compounds: model estimation and field evaluation. Environ Sci & Tech 15:859–867

    Article  Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van Grieken R (2008) Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 18:454

    Article  CAS  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust; a new table. Geochim Cosmochim Acta 28(8):1,273–1,285. doi:10.1016/0016-7037(64)90129-2

    Article  CAS  Google Scholar 

  • Thatcher TL, Layton DW (1995) Deposition, resuspension, and penetration of particles within a residence. Atmos Environ 29:1487–1497

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency, 1996. Soil screening guidance: technical background document. EPA/540/R-95/128. Office of solid waste and emergency response. U.S. Environmental Protection Agency. Washington, D.C. http://www.epa.gov/superfund/resources/soil/toc.htm#p1

  • U.S. Environmental Protection Agency, (2001). Supplemental guidance for developing soil screening levels for super-fund sites. OSWER9355.4–24. Office of solid waste and emergency response. U.S. Environmental Protection. Agency.Washington, D.C http://www.epa.gov/superfund/ resources/soil/ssgmarch01.pdf

  • U.S. EPA (2006) Integrated risk information system. Environmental Protection Agency, http://www.epa.gov/iris

  • Wang B, Lee SC, Ho KF, Kang YM (2007) Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Sci Tot Environ 377:52–60

    Article  CAS  Google Scholar 

  • Weber S (2006) Exposure of churchgoers to airborne particles. Environ Sci Technol 40:5251–5256

    Article  CAS  Google Scholar 

  • Whitehead TP, Nuckols JR, Ward MH, Rappaport SM (2012) Carpet-dust chemicals as measures of exposure: implications of variability. Emerging Themes in Epidemiology 9:2

    Article  Google Scholar 

  • WHO (World Health Organization) regional publications. European series; No. 91 Air quality guidelines for Europe; second edition (2000)

  • Yılmaz O, Akın K, Aykut B, Eren A, Sofuoglu S, Sofuoglu C (2012) Exposure to particulate matter in a mosque. Atmos Env 56:169–176

    Article  Google Scholar 

  • Zhang W, Zhang S, Wan C, Yue D, Ye Y, Wang X (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy through fall. Env Pol 153:594–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology, and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (NPST 09-ENV-1020-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarif H. El-Mubarak.

Additional information

Responsible editor: Hongwen Sun

Electronic supplementary material

FIG S1

(DOCX 40 kb)

FIG S2

(DOCX 52 kb)

TABLE S1

(DOCX 33 kb)

TABLE S2

(DOCX 25 kb)

TABLE S3

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mubarak, A.H., Rushdi, A.I., Al-Mutlaq, K.F. et al. Polycyclic aromatic hydrocarbons and trace metals in mosque’s carpet dust of Riyadh, Saudi Arabia, and their health risk implications. Environ Sci Pollut Res 23, 21273–21287 (2016). https://doi.org/10.1007/s11356-016-7299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7299-4

Keywords

Navigation