Skip to main content

Advertisement

Log in

Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s−1, the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m−3 and ca. 104 1 cm−3 at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s−1. Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m−3 with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m−3 with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderlohr C, Brachert L, Mertens J, Schaber K (2015) Collection and generation of sulfuric acid aerosols in a wet electrostatic precipitator. Aerosol Sci Tech 49(3):144–151

    Article  CAS  Google Scholar 

  • Brachert L, Kochenburger T, Schaber K (2013) Facing the sulfuric acid aerosol problem in flue gas cleaning: pilot plant experiments and simulation. Aerosol Sci Tech 47(10):1083–1091

    Article  CAS  Google Scholar 

  • Brachert L, Mertens J, Khakharia P, Schaber K (2014) The challenge of measuring sulfuric acid aerosols: Number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+). J Aerosol Sci 67(1):21–27

    Article  CAS  Google Scholar 

  • Cao Y, Zhou HC, Jiang W, Chen CW, Pan WP (2010) Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods. Environ Sci Technol 44(9):3429–3434

    Article  CAS  Google Scholar 

  • Chang JC, Dong Y, Wang ZQ, Wang P, Chen P, Ma CY (2011) Removal of sulfuric acid aerosol in a wet electrostatic precipitator with single terylene or polypropylene collection electrodes. J Aerosol Sci 42(8):544–554

    Article  CAS  Google Scholar 

  • Chen TM, Tsai CJ, Yan SY, Li SN (2014) An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Sep and Purif Technol 136(136):27–35

    Article  CAS  Google Scholar 

  • Fletcher NH (1958) Size effects in heterogeneous nucleation. J Chem Phys 29(3):572–576

    Article  CAS  Google Scholar 

  • Held A, Zerrath A, McKeon U, Fehrenbach T, Niessner R, Plass-Dülmer C, Kaminski U, Berresheim H, Pöschl U (2008) Aerosol size distributions measured in urban, rural and high-alpine air with an electrical low pressure impactor (ELPI). Atmos Environ 42(36):8502–8512

    Article  CAS  Google Scholar 

  • Huang CH, Tsai CJ, Wang YM (2007) Control efficiency of submicron particles by an efficient venture scrubber system. J Environ Eng 133:454–461

    Article  CAS  Google Scholar 

  • Huang SH, Chen CC (2002) Ultrafine aerosol penetration through electrostatic precipitators. Environ Sci Technol 36(21):4625–4632

    Article  CAS  Google Scholar 

  • Ivleva NP, McKeon U, Niessner R, Pöschl U (2007) Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: soot, humic-like substances, and inorganic compounds. Aerosol Sci Tech 41(7):655–671

    Article  CAS  Google Scholar 

  • Jeong SH, Shim SH, Song DK, Hong WS, Hong JH, Lee SS (2013) Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist and fine particulates. Pol J of Environ Stud 22(2):409–415

    CAS  Google Scholar 

  • Khakharia P, Brachert L, Mertens J, Huizinga A, Schallert B, Schaber K, Vlugt TJH, Goetheer E (2013) Investigation of aerosol based emission of MEA due to sulphuric acid aerosol and soot in a post combustion CO2 capture process. Int J Greenh Gas Con 19(21):138–144

    Article  CAS  Google Scholar 

  • Linda SB, Bo L, Claes T, Morten B (2011) Particle emissions from pellets stoves and modern and old-type wood stoves. Biomass Bioenergy 35(8):3648–3655

    Article  Google Scholar 

  • Lin GY, Chen TM, Tsai CJ (2012) A Modified Deutsch-Anderson Equation for Predicting the Nanoparticle Collection Efficiency of Electrostatic Precipitators. Aerosol Air Qual Res 12:697–706

    Google Scholar 

  • Lin GY, Tsai CJ (2010) Numerical Modeling of Nanoparticle Collection Efficiency of Single-Stage Wire-in-Plate Electrostatic Precipitators. Aerosol Sci Tech 44(12):1122–1130

    Article  CAS  Google Scholar 

  • Mertens J, Lepaumier H, Desagher D, Thielens ML (2013) Understanding ethanolamine (MEA) and ammonia emissions from amine based post combustion carbon capture: lessons learned from field tests. Int J Greenh Gas Con 13(13):72–77

    Article  CAS  Google Scholar 

  • Mertens J, Anderlohr C, Rogiers P, Brachert L, Khakharia P, Goetheer E, Schaber K (2014a) A wet electrostatic precipitator (WESP) as countermeasure to mist formation in amine based carbon capture. Int J Greenh Gas Con 31:175–181

    Article  CAS  Google Scholar 

  • Mertens J, Brachert L, Desagher D, Thielens ML, Khakharia P, Goetheer E, Schaber K (2014b) ELPI+ measurements of aerosol growth in an amine absorption column. Int J Greenh Gas Con 23(4):44–50

    Article  CAS  Google Scholar 

  • Moser P, Schmidt S, Stahl K, Vorberg G, Lozano GA, Stoffregen T, Rösler F (2014) Demonstrating emission reduction-results from the post-combustion capture pilot plant at Niederaussem. Energy Procedia 63:902–910

    Article  CAS  Google Scholar 

  • Moser P, Schmidt S, Stahl K, Vorberg G, Lozano GA, Stoffregen T, Richter T (2015) The wet electrostatic precipitator as a cause of mist formation-results from the amine-based post-combustion capture pilot plant at Niederaussem. Int J Greenh Gas Con 41:229–238

    Article  CAS  Google Scholar 

  • Srivastava RK, Miller CA, Erickson C, Jambhekar R (2004) Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manage Assoc 54(6):750–762

    Article  CAS  Google Scholar 

  • Yang L, Bao J, Yan J, Liu J, Song S, Fan F (2010) Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation. Chem Eng J 156(1):25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High-tech R&D Program of China (863 Program) (No. 2013AA065001) and China Postdoctoral Science Foundation (No. 2015M571088) and the strategic priority research program of the Chinese Academy of Sciences (No. XDB05050100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Wang or Yingjie Shi.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, H., Shi, Y. et al. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist. Environ Sci Pollut Res 23, 19219–19228 (2016). https://doi.org/10.1007/s11356-016-7151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7151-x

Keywords

Navigation