Skip to main content

Advertisement

Log in

Potential of fly ash for neutralisation of acid mine drainage

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3 tonne−1) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca2+, SO4 2−, Na+ and Cl in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACAA (2015) An American recycling success story: beneficial use of coal combustion products. The American Coal Ash Association

  • ASTM (2015) C618-15 Standard: specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA. 10.1520/C0618-15

  • Bäckström M, Sartz L (2011) Mixing of Acid Rock Drainage with Alkaline Ash Leachates-Fate and Immobilisation of Trace Elements. Water Air Soil Pollut 222:377–389. doi:10.1007/s11270-011-0831-8

    Article  Google Scholar 

  • Baker WT (1987) Production and Properties of Fly Ash, Proceedings of the Utilization of Ash Workshop. University of North Dakota, Grand Forks

    Google Scholar 

  • Bulusu S, Aydilek AH, Rustagi N (2007) CCB-based encapsulation of pyrite for remediation of acid mine drainage. J Hazard Mater 143:609–619. doi:10.1016/j.jhazmat.2007.01.035

    Article  CAS  Google Scholar 

  • Cheong Y, Min J, Kwon K (1998) Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. J Geochem Explor 64:147–152. doi:10.1016/S0375-6742(98)00028-4

    Article  CAS  Google Scholar 

  • de Boer GBJ, de Weerd C, Thoenes D, Goossens HWJ (1987) Laser diffraction spectrometry: Fraunhofer diffraction versus mie scattering. Part Part Syst Charact 4:14–19. doi:10.1002/ppsc.19870040104

    Article  Google Scholar 

  • Deschamps R (1998) Using FBC and stoker ashes as roadway fill: a case study. J Geotech Geoenviron Eng 124:1120–1127. doi:10.1061/(ASCE)1090-0241(1998)124:11(1120)

    Article  CAS  Google Scholar 

  • Geldenhuys AJ, Maree JP, De Beer M, Hlabela P (2003) An integrated limestone/lime process for partial sulphate removal. J S Afr Inst Min Metall 103:345–354

    CAS  Google Scholar 

  • Ghassemi A (2002) Handbook of pollution control and waste minimization. Marcel Dekker, New York

    Google Scholar 

  • Gitari MW, Petrik LF, Etchebers O, Key DL, Iwuoha E, Okujeni C (2006) Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements. J Environ Sci Heal A 41:1729–1747. doi:10.1080/10934520600754425

    Article  CAS  Google Scholar 

  • Gladney ES, Wangen LE, Curtis DB, Jurney ET (1978) Observations on boron release from coal-fired power plants. Environ Sci Technol 12:1084–1085. doi:10.1021/es60145a015

    Article  CAS  Google Scholar 

  • GoS (2012) Lakhra Coal Field. Thar Coal Energy Board, Government of Sindh, Pakistan. http://www.sindhcoal.gos.pk/coal-fields/lakhra-coalfield/. Accessed in: 10/2014

  • Hansen LD, Fisher GL (1980) Elemental distribution in coal fly ash particles. Environ Sci Technol 14:1111–1117. doi:10.1021/es60169a015

    Article  CAS  Google Scholar 

  • Höglund L, Herbert R, Lövgren L, Öhlander B, Neretnieks I, Moreno L, Malmström M, Elander P, Lindvall M, Lindström B (2004) MiMi—performance assessment–main report: MiMi report 2003:3. MiMi Print, Luleå, Stockholm

    Google Scholar 

  • INAP (2009) Global acid rock drainage guide (GARD Guide), http://www.gardguide.com/. International Network for Acid Prevention. http://www.gardguide.com/ Accessed in: 08/2015

  • ISO 14688-1 (2002) Geotechnical investigation and testing—identification and classification of soil: part 1—identification and description. The International Organization for Standardization (ISO) 1

  • Iwashita A, Sakaguchi Y, Nakajima T, Takanashi H, Ohki A, Kambara S (2005) Leaching characteristics of boron and selenium for various coal fly ashes. Fuel 84:479–485. doi:10.1016/j.fuel.2004.11.002

    Article  CAS  Google Scholar 

  • Iyer R (2002) The surface chemistry of leaching coal fly ash. J Hazard Mater 93:321–329. doi:10.1016/S0304-3894(02)00049-3

    Article  CAS  Google Scholar 

  • Izquierdo M, Querol X (2012) Leaching behaviour of elements from coal combustion fly ash: an overview. Int J Coal Geol 94:54–66. doi:10.1016/j.coal.2011.10.006

    Article  CAS  Google Scholar 

  • Izquierdo M, Moreno N, Font O, Querol X, Alvarez E, Antenucci D, Nugteren H, Luna Y, Fernández-Pereira C (2008) Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel 87:1958–1966. doi:10.1016/j.fuel.2007.11.002

    Article  CAS  Google Scholar 

  • Ji S, Lim G, Cheong Y, Yoo K (2012) Treatment efficiency of acid mine drainage by the ho-nam coal mine passive treatment system. Geosyst Eng 15:27–32

    Article  Google Scholar 

  • Jia Y, Maurice C, Öhlander B (2014) Effect of the alkaline industrial residues fly ash, green liquor dregs, and lime mud on mine tailings oxidation when used as covering material. Environ Earth Sci 72:319–334. doi:10.1007/s12665-013-2953-3

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  CAS  Google Scholar 

  • Johnson A, Catalan LJJ, Kinrade SD (2010) Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel 89:3042–3050. doi:10.1016/j.fuel.2010.05.027

    Article  CAS  Google Scholar 

  • Jones DR (1995) Energy & Environment 2nd ed. – Environmental Aspects of Trace Elements in Coal. In: Swaine D, Goodarzi F (eds) The Leaching of Major and Trace Elements from Coal Ash. Springer, Netherlands, pp 221–262

    Google Scholar 

  • Kalin M, Fyson A, Wheeler WN (2006) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ 366:395–408. doi:10.1016/j.scitotenv.2005.11.015

    Article  CAS  Google Scholar 

  • Kamon M, Katsumi T, Sano Y (2000) MSW fly ash stabilized with coal ash for geotechnical application. J Hazard Mater 76:265–283. doi:10.1016/S0304-3894(00)00203-X

    Article  CAS  Google Scholar 

  • Kosson DS, van der Sloot HA, Eighmy TT (1996) An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues. J Hazard Mater 47:43–75. doi:10.1016/0304-3894(95)00109-3

    Article  CAS  Google Scholar 

  • Koukouzas N, Hämäläinen J, Ketikidis C, Papanikolaou D, Tremouli A (2007) Definition of mineral and chemical composition of fly ash derived from CFB combustion of coal with biomass. Carbon 68:48.77

    Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Kukier U, Summer ME (2004) VI.9 Agricultural utilization of coal combustion residues. In: Twardowska I, Allen HE, Kettrup AAF, Lacy WJ (eds) Waste Management Series. Elsevier, pp 1003-1017

  • Kukier U, Ishak CF, Sumner ME, Miller WP (2003) Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ Pollut 123:255–266. doi:10.1016/S0269-7491(02)00376-7

    Article  CAS  Google Scholar 

  • Lieberman RN, Teutsch N, Cohen H (2014) Chemical and Surface Transformations of Bituminous Coal Fly Ash Used in Israel Following Treatments with Acidic and Neutral Aqueous Solutions. Energy Fuels 28:4657–4665. doi:10.1021/ef500564k

    Article  CAS  Google Scholar 

  • Long SE, Martin TD (1991) METHOD 200.8 - Determination of trace elements in waters and wastes by Inductively Coupled Plasma-Mass Spectropemtry. Methods for Determining Metals in Environmental Samples EPA/600/4-91/010:84-122

  • Macías F, Caraballo MA, Rötting TS, Pérez-López R, Nieto JM, Ayora C (2012) From highly polluted Zn-rich acid mine drainage to non-metallic waters: implementation of a multi-step alkaline passive treatment system to remediate metal pollution. Sci Total Environ 433:323–330

    Article  Google Scholar 

  • Maree JP, Van Tonder GJ (2000) Limestone neutralization of Iron (II) rich acid water. WISA 2000 biennial conference. Sun City, South Africa

  • Maree JP, Greben H, Mnqanqeni S (2000) Simultaneous removal of sulphate and sulphide with the biosure process from coal acid mine drainage. WISA 2000 Biennual conference. Sun City, South Africa.

  • Markowski GR, Filby R (1985) Trace element concentration as a function of particle size in fly ash from a pulverized coal utility boiler. Environ Sci Technol 19:796–804. doi:10.1021/es00139a005

    Article  CAS  Google Scholar 

  • Marschner B, Noble AD (2000) Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials. Soil Biol Biochem 32:805–813. doi:10.1016/S0038-0717(99)00209-6

    Article  CAS  Google Scholar 

  • Martin TD, Brockhoff CA, Creed JT, Long SE (1991) METHOD 200.7 - Determination of elements and trace elements in water and wastes by Inductively Coupled Plasma-Atomic Emmission Spectropemtry. Methods for Determining Metals in Environmental Samples EPA/600/4-91/010:31-82

  • Okoli RE, Balafoutas G (1999) Bottom ash from sludge cake as a barrier material to pollutant migration in landfills. Waste Manag Res 17:288–295. doi:10.1034/j.1399-3070.1999.00046.x

    Article  CAS  Google Scholar 

  • Pathan SM, FAU AL, Colmer TD (2003) Properties of several fly ash materials in relation to use as soil amendments. J Environ Qual 32(2):687–693

    Article  CAS  Google Scholar 

  • Peng X, Wang Y, Chai L, Shu Y (2009) Thermodynamic equilibrium of CaSO4-Ca(OH)2-H2O system. T Nonferr Metal Soc 19:249–252. doi:10.1016/S1003-6326(08)60260-5

    Article  CAS  Google Scholar 

  • Pérez-López R, Nieto JM, de Almodóvar GR (2007) Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Chemosphere 67:1637–1646. doi:10.1016/j.chemosphere.2006.10.009

    Article  Google Scholar 

  • Pérez-López R, Cama J, Miguel Nieto J, Ayora C, Saaltink MW (2009) Attenuation of pyrite oxidation with a fly ash pre-barrier: reactive transport modelling of column experiments. Appl Geochem 24:1712–1723. doi:10.1016/j.apgeochem.2009.05.001

    Article  Google Scholar 

  • Phung HT, Lam HV, Page AL, Lund LJ (1979) The practice of leaching boron and soluble salts from fly ash-amended soils. Water Air Soil Pollut 12:247–254. doi:10.1007/BF01047127

    Article  CAS  Google Scholar 

  • Prasad B, Mortimer RJG (2011) Treatment of Acid Mine Drainage Using Fly Ash Zeolite. Water Air Soil Pollut 218:667–679. doi:10.1007/s11270-010-0676-6

    Article  CAS  Google Scholar 

  • Ratafia-Brown JA (1994) Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Process Technol 39:139–157. doi:10.1016/0378-3820(94)90177-5

    Article  CAS  Google Scholar 

  • Sarkar A, Rano R (2007) Water holding capacities of fly ashes: effect of size fractionation. Energy Sources, Part A: Recover, Utilization Environ Effects 29:471–482. doi:10.1080/00908310500276874

    Article  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116. doi:10.1016/j.mineng.2005.08.006

    Article  CAS  Google Scholar 

  • Shoaib M (2013) Ch. 14. Energy. In: Wasti SE (ed) Pakistan economic survey 2012–13. Ministry of Finance, Government of Pakistan, Islamabad, Pakistan, pp 187–202

    Google Scholar 

  • Shukla J, Mohandas VP, Kumar A (2008) Effect of pH on the Solubility of CaSO4·2H2O in Aqueous NaCl Solutions and Physicochemical Solution Properties at 35 °C. J Chem Eng Data 53:2797–2800. doi:10.1021/je800465f

    Article  CAS  Google Scholar 

  • Siddiqui I (1999) Heavy Metal Studies in Lakhra Coal, Thesis. The National Centre of Excellence in Geology. University of Peshawar, Pakistan

    Google Scholar 

  • SIS (2003) SS-EN 12457-4:2003 - Characterization of waste - leaching tests - control test for leaching of granular materials and sludges - part 4: single-stage shake test at L / S 10 l / kg for materials with particle size less than 10 mm (without or with Crushing). Swedish Standards Institute

  • Tamaura Y, Katsura T, Rojarayanont S, Yoshida T, Abe H (1991) Ferrite Process; heavy metal ions treatment system. Water Sci Technol 23:1893–1900

    CAS  Google Scholar 

  • Tay J, Goh A (1991) Engineering Properties of Incinerator Residue. J Environ Eng 117:224–235. doi:10.1061/(ASCE)0733-9372(1991)117:2(224)

    Article  CAS  Google Scholar 

  • Tsiridis V, Samaras P, Kungolos A, Sakellaropoulos GP (2006) Application of leaching tests for toxicity evaluation of coal fly ash. Environ Toxicol 21:409–416. doi:10.1002/tox.20187

    Article  CAS  Google Scholar 

  • Vadapalli VK, Petrik L, Fester V, Slatter P, Sery G (2007) Effect of fly ash particle size on its capacity to neutralize acid mine drainage and influence on the rheological behavior of the residual solids. World of Coal Ash (WOCA)

  • Wang W, Zhenghe XU, Finch J (1996) Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage. Environ Sci Technol 30:2604–2608

    Article  CAS  Google Scholar 

  • Wyatt PH (1984) Technique for determining the acid neutralizing capacity of till and other surficial sediments. Paper Geol Surv Can :597–600

  • Zhang F, Yamasaki S, Nanzyo M (2002) Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Sci Total Environ 284:215–225. doi:10.1016/S0048-9697(01)00887-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the administration at Lakhra Power Station, Pakistan, Naantali Power Plant, Finland, and BillerudKorsnäs, Sweden, for providing materials. Thanks are also extended to the Division of Geosciences and Environmental Engineering at Luleå University of Technology, Sweden, for bearing expenses of research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Qureshi.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, A., Jia, Y., Maurice, C. et al. Potential of fly ash for neutralisation of acid mine drainage. Environ Sci Pollut Res 23, 17083–17094 (2016). https://doi.org/10.1007/s11356-016-6862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6862-3

Keywords

Navigation