Skip to main content
Log in

Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal

  • Global pollution problems, Trends in Detection and Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4 +, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade LS, Rutuolo LAM, Rocha-Filho RC, Bocchi N, Biaggio S, Iniesta J, García-Garcia V, Montiel V (2007) On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater. Chemosphere 66:2035–2043. doi:10.1016/j.chemosphere.2006.10.028

    Article  CAS  Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755. doi:10.1002/jctb.2214

    Article  CAS  Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped diamond anodic treatment of landfill leachate: evaluation of operation variables and formation of oxidation by-products. Water Res 45:828–838. doi:10.1016/j.watres.2010.09.017

    Article  CAS  Google Scholar 

  • Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166:603–643. doi:10.1016/j.apcatb.2014.11.016

    Article  Google Scholar 

  • Canizares P, Rubén P, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manage 90:410–420. doi:10.1016/j.jenvman.2007.10.010

    Article  CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. doi:10.1016/j.seppur.2003.10.006

    Article  Google Scholar 

  • Chiang LC, Chang JE, Wen TC (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res 29:671–678. doi:10.1016/0043-1354(94)00146-X

    Article  CAS  Google Scholar 

  • Ciríaco L, Anjo C, Correia J, Pacheco MJ, Lopes A (2009) Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes. Electrochim Acta 54:1464–1472. doi:10.1016/j.electacta.2008.09.022

    Article  Google Scholar 

  • Eaton A, Clesceri L, Rice E, Greenberg A, Franson MA (2005) Standard methods for examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Fernandes A, Pacheco MJ, Ciríaco L, Lopes A (2012) Anodic oxidation of a biologically treated leachate on a boron-doped diamond anode. J Hazard Mater 199–200:82–87. doi:10.1016/j.jhazmat.2011.10.074

  • Fernandes A, Pacheco MJ, Ciríaco L, Lopes A (2015) Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future. Appl Catal B-Environ 176:183–200. doi:10.1016/j.apcatb.2015.03.052

    Article  Google Scholar 

  • Fernandes A, Santos D, Pacheco MJ, Ciríaco L, Lopes A (2014) Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Appl Catal B Environ 148:288–294. doi:10.1016/j.apcatb.2013.10.060

    Article  Google Scholar 

  • Fernandes A, Santos D, Pacheco MJ, Ciríaco L, Lopes A (2016) Electrochemical oxidation of humic acid and sanitary landfill leachate: Influence of anode material, chloride concentration and current density. Sci Total Environ 541:282–291. doi:10.1016/j.scitotenv.2015.09.052

  • Lin H, Niu J, Ding S, Zhang L (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Res 46:2281–2289. doi:10.1016/j.watres.2012.01.053

  • Lin H, Niu J, Xu J, Huang H, Li D, Yue Z, Feng C (2013a) Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9−C10) by Ti/SnO2−Sb−Ce, Ti/SnO2−Sb/Ce−PbO2, and Ti/BDD electrodes. Environ Sci Technol 47:13039–13046. doi:10.1021/es4034414

    Article  CAS  Google Scholar 

  • Lin H, Niu J, Xu J, Li Y, Pan Y (2013b) Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution. Electrochim Acta 97:167– 174. doi: 10.1016/j.electacta.2013.03.019

  • Liu J, Cao J, Chen H, Zhou D (2015) Adsorptive removal of humic acid from aqueous solution by micro and mesoporous covalent triazine-based framework. Colloids Surf A Physicochem Eng Asp 481:276–282. doi:10.1016/j.colsurfa.2015.05.021

    Article  CAS  Google Scholar 

  • Mazellier P, Leroy É, De Laat J, Legube B (2003) Degradation of carbendazim by UV/H2O2 investigated by kinetic modelling. Environ Chem Lett 1:68–72. doi:10.1007/s10311-002-0010-7

    Article  CAS  Google Scholar 

  • Niu J, Li Y, Shang E, Xu Z, Liu J (2016) Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146:526–538. doi:10.1016/j.chemosphere.2015.11.115

    Article  CAS  Google Scholar 

  • Panizza M, Martinez-Huitle C (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate—comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–60. doi:10.1016/j.chemosphere.2012.09.006

    Article  CAS  Google Scholar 

  • Pérez G, Saiz J, Ibãnez R, Urtiaga A, Ortiz I (2012) Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Res 46:2579–2590. doi:10.1016/j.watres.2012.02.015

    Article  Google Scholar 

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

    Article  Google Scholar 

  • Woisetschläger D, Humpl B, Koncar M, Siebenhofer M (2013) Electrochemical oxidation of wastewater—opportunities and drawbacks. Water Sci Technol 65:1173–9. doi:10.2166/wst.2013.366

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received from Fundação para a Ciência e a Tecnologia, FCT, for the financing of the FibEnTech Research Unit, project Pest-OE/CTM/UI0195/2014, and for the grant awarded to Annabel Fernandes, SFRH/BPD/103615/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annabel Fernandes.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Variation with time of DIC, relative TDN and nitrite concentration during the electrodegradation experiments performed using (a,c,e) BDD and (b,d,f) Ti/Pt/PbO2 anodes (TIF 20501 kb)

Fig. S2

Variation with time of DIC, relative TDN and nitrite concentration during the electrodegradation experiments performed using (a,c,e) BDD and (b,d,f) Ti/Pt/PbO2 anodes in the presence of chloride initial concentration of 4.5 g L-1 (TIF 20345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A., Coelho, J., Ciríaco, L. et al. Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal. Environ Sci Pollut Res 23, 24614–24623 (2016). https://doi.org/10.1007/s11356-016-6851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6851-6

Keywords

Navigation