Skip to main content
Log in

Magnetic iron species highly dispersed over silica: use as catalysts for removal of pollutants in water

  • AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fe2O3-SiO2 composites were prepared by impregnation (sample FeIMP) or doping (sample FeDOP) in the structure of porous silica. The dye removal capacity of the materials was investigated through adsorption and oxidation studies of methylene blue and rhodamine B. N2 adsorption/desorption measurements on FeIMP and FeDOP resulted in specific areas of 27 and 235 m2 g−1, respectively. Mössbauer spectroscopy and XRD data detected hematite and maghemite as the iron phases in the samples FeIMP and FeDOP, respectively. Adsorption isotherms and kinetic studies of the dyes were better fitted in DKR model for FeDOP, where the process follows a pseudo-second order with the interparticle diffusion step being the rate-limiting step. On the other hand, FeIMP has better fit in the Langmuir model. Photocatalytic activity was observed in FeDOP under UV irradiation by the presence of reaction-hydroxylated intermediates for MB (m/z = 301) and RhB (m/z = 459). However, the photocatalytic activity was strongly influenced by the adsorption affinity between dye/catalyst. Photogenerated holes are the species responsible for the dye degradation when the adsorption is too strong, while hydroxyl radical action will be favored when the adsorption is not vigorous as detected by ESI-MS.

Action of photogenerated holes and free electrons into the photocatalytically mechanism of methylene blue degradation over a semiconductor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ajmal A, Majeed I, Malik N (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. R Soc Chem Adv 4:37003–37026. doi:10.1039/c4ra06658h

    CAS  Google Scholar 

  • Al-anber ZA, Al-anber MAS (2008) Thermodynamics and kinetic studies of iron (III) adsorption by olive cake in a batch system. J Mex Chem Soc 52:108–115

    CAS  Google Scholar 

  • Alihosseini A, Taghikhani V, Safekordi AA, Bastani D (2010) Equilibrium sorption of crude oil by expanded perlite using different adsorption isotherms at 298. 15 k. Int J Environ Sci Technol 7:591–598

    Article  CAS  Google Scholar 

  • Bjørgen M, Joensen F, Spangsberg M, et al (2008) Applied Catalysis A : General Methanol to gasoline over zeolite H-ZSM-5 : Improved catalyst performance by treatment with NaOH. 345:43–50. doi: 10.1016/j.apcata.2008.04.020

  • Castro CS, Guerreiro MC, Gonçalves M et al (2009) Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J Hazard Mater 164:609–614. doi:10.1016/j.jhazmat.2008.08.066

    Article  CAS  Google Scholar 

  • Cortes J, Araya P (1986) The Dubinin-Radushkevich-Kaganer equation. J Chem Soc Faraday Trans 82:2473–2479

    Article  CAS  Google Scholar 

  • de Souza WF, Guimarães IR, Guerreiro MC, Oliveira LCA (2009) Catalytic oxidation of sulfur and nitrogen compounds from diesel fuel. Appl Catal A Gen 360:205–209. doi:10.1016/j.apcata.2009.03.023

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  • Gonçalves M, Guerreiro MC, de Oliveira LCA, de Castro CS (2013) A friendly environmental material: iron oxide dispersed over activated carbon from coffee husk for organic pollutants removal. J Environ Manage 127:206–11. doi:10.1016/j.jenvman.2013.05.017

    Article  Google Scholar 

  • Gong J-L, Wang B, Zeng G-M et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–22. doi:10.1016/j.jhazmat.2008.09.072

    Article  CAS  Google Scholar 

  • Hasanbeigi A, Price L (2015) A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J Clean Prod 95:30–44. doi:10.1016/j.jclepro.2015.02.079

    Article  CAS  Google Scholar 

  • Kordouli E, Bourikas K, Lycourghiotis A, Kordulis C (2015) The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catal Today 252:128–135. doi:10.1016/j.cattod.2014.09.010

    Article  CAS  Google Scholar 

  • Litter M (1999) Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114. doi:10.1016/S0926-3373(99)00069-7

    Article  CAS  Google Scholar 

  • Marcelino RBP, Queiroz MTA, Amorim CC, et al (2014) Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil. Environ Sci Pollut Res 762–773. doi: 10.1007/s11356-014-3033-2

  • Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C Photochem Rev 11:157–178. doi:10.1016/j.jphotochemrev.2011.02.001

    Article  CAS  Google Scholar 

  • Oliveira LCA, Gonçalves M, Guerreiro MC et al (2007) A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Appl Catal A Gen 316:117–124. doi:10.1016/j.apcata.2006.09.027

    Article  CAS  Google Scholar 

  • Pinto ISX, Pacheco PHVV, Coelho JV et al (2012) Nanostructured δ-FeOOH: an efficient Fenton-like catalyst for the oxidation of organics in water. Appl Catal B Environ 119–120:175–182. doi:10.1016/j.apcatb.2012.02.026

    Article  Google Scholar 

  • Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory. VCH, Nova York

    Google Scholar 

  • Schwertmann U, Cornell RM (2003) The iron oxides: structure, properties, reactions, occurences and uses, second edition. Wiley-VCH, Weinheim

    Google Scholar 

  • Silva AC, Oliveira DQL, Oliveira LCA et al (2009) Nb-containing hematites Fe2−xNbxO3: the role of Nb5+ on the reactivity in presence of the H2O2 or ultraviolet light. Appl Catal A Gen 357:79–84. doi:10.1016/j.apcata.2009.01.014

    Article  CAS  Google Scholar 

  • Srivastava SK, Tyagi R, Pant N (1989) Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res 23:1161–1165

  • Sun Q, Yang L (2003) The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res 37:1535–44. doi:10.1016/S0043-1354(02)00520-1

    Article  CAS  Google Scholar 

  • United Nations Department of Economic and Social Affairs (2015) World Population Prospects: The 2015 Revision (ESA/P/WP.241). 1–59. doi: Working Paper No. ESA/P/WP.241

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59

  • Wu F-C, Tseng R-L, Juang R-S (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8. doi:10.1016/j.cej.2009.04.042

    Article  CAS  Google Scholar 

  • Wu W, Jiang C, Roy VAL (2015) Recent progress in magnetic iron oxide semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7:38–58. doi:10.1039/C4NR04244A

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian National Counsel of Technological and Scientific Development (CNPq) for the funds and to the Nuclear Technology Development Center (CDTN) for the Mössbauer analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. A. Freitas.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, V.A.A., Maia, L.A., Belardinelli, R.E. et al. Magnetic iron species highly dispersed over silica: use as catalysts for removal of pollutants in water. Environ Sci Pollut Res 24, 6114–6125 (2017). https://doi.org/10.1007/s11356-016-6495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6495-6

Keywords

Navigation