Skip to main content

Advertisement

Log in

Air–sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The air–sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January–February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air–sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m−3 and 1.40 ± 0.48 ng L−1, respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L−1) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R 2 = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air–sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m−2 h−1 with a large range between 0.01 and 6.06 ng m−2 h−1. The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amyot M, Gill GA, Morel FMM (1997) Production and loss of dissolved gaseous mercury in coastal seawater. Environ Sci Technol 31:3606–3611

    Article  CAS  Google Scholar 

  • Andersson ME, Gårdfeldt K, Wängberg I, Sprovieri F, Pirrone N, Lindqvist O (2007) Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Mar Chem 104:214–226

    Article  CAS  Google Scholar 

  • Andersson ME, Gårdfeldt K, Wängberg I, Strömberg D (2008a) Determination of Henry’s law constant for elemental mercury. Chemosphere 73:587–592

    Article  CAS  Google Scholar 

  • Andersson ME, Sommar J, Gårdfeldt K, Lindqvist O (2008b) Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar Chem 110:190–194

    Article  CAS  Google Scholar 

  • Christian JR, Verschell MA, Murtugudde R, Busalacchi AJ, McClain CR (2001) Biogeochemical modelling of the tropical Pacific Ocean. I: Seasonal and interannual variability. Deep-Sea Res 49:509–543

    Google Scholar 

  • Ci ZJ, Zhang XS, Wang ZW (2011a) Elemental mercury in coastal seawater of Yellow Sea, China: temporal variation and air–sea exchange. Atmos Environ 45:183–190

    Article  CAS  Google Scholar 

  • Ci ZJ, Zhang XS, Wang ZW, Niu ZC (2011b) Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site downwind of East China: temporal variation and long-range transport. Atmos Environ 45:2480–2487

    Article  CAS  Google Scholar 

  • Ci ZJ, Zhang XS, Wang ZW, Niu ZC (2011c) Phase speciation of mercury (Hg) in coastal water of the Yellow Sea, China. Mar Chem 126:250–255

    Article  CAS  Google Scholar 

  • Ci ZJ, Zhang XS, Wang ZW, Niu ZC, Diao XY, Wang SW (2011d) Distribution and air–sea exchange of mercury (Hg) in the Yellow Sea. Atmos Chem Phys 11:2881–2892

    Article  CAS  Google Scholar 

  • Ci ZJ, Wang CJ, Wang ZW, Zhang XS (2015) Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: concentration, spatial-temporal distribution and air/sea flux. Chemosphere 119:199–208

    Article  CAS  Google Scholar 

  • Ci ZJ, Zhang XS, Yin YG, Chen JS, Wang SW (2016) Mercury redox chemistry in waters of the eastern Asian seas: from polluted coast to clean open ocean. Environ Sci Technol. doi:10.1021/acs.est.5b05372

    Google Scholar 

  • Costa M, Liss PS (1999) Photoreduction of mercury in sea water and its possible implications for Hg0 air–sea fluxes. Mar Chem 68:87–95

    Article  CAS  Google Scholar 

  • Covelli S, Faganeli J, De Vittor C, Predonzani S, Acquavita A, Horvat M (2008) Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl Geochem 23:529–546

    Article  CAS  Google Scholar 

  • Ebinghaus R, Kock HH, Coggins AM, Spain TG, Jennings SG, Temme C (2002) Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. Atmos Environ 36:5267–5276

    Article  CAS  Google Scholar 

  • Fantozzi L, Ferrara R, Frontini FP, Dini F (2007) Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea. Mar Chem 107:4–12

    Article  CAS  Google Scholar 

  • Fantozzi L, Ferrara R, Frontini FP, Dini F (2009) Dissolved gaseous mercury production in the dark: evidence for the fundamental role of bacteria in different types of Mediterranean water bodies. Sci Total Environ 407:917–924

    Article  CAS  Google Scholar 

  • Fantozzi L, Manca G, Ammoscato I, Pirrone N, Sprovieri F (2013) The cycling and sea–air exchange of mercury in the waters of the Eastern Mediterranean during the 2010 MED–OCEANOR cruise campaign. Sci Total Environ 448:151–162

    Article  CAS  Google Scholar 

  • Ferrara R, Mazzolai B, Lanzillotta E, Nucaro E, Pirrone N (2000) Temporal trends in gaseous mercury evasion from the Mediterranean seawaters. Sci Total Environ 259:183–190

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Gill GA, Kim JP (1984) An Equatorial Pacific Ocean source of atmospheric mercury. Science 224:597–599

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  • Fu X, Feng X, Zhang G, Xu W, Li X, Yao H, Liang P, Li J, Sommar J, Yin R, Liu N (2010) Mercury in the marine boundary layer and seawater of the South China Sea: concentrations, sea/air flux, and implication for land outflow. J Geophys Res 115:D06303. doi:10.1029/2009JD012958

    Article  Google Scholar 

  • Gårdfeldt K, Sommar J, Ferrara R, Ceccarini C, Lanzillotta E, Munthe J, Wängberg I, Lindqvist O, Pirrone N, Sprovieri F, Pesenti E, Strömberg D (2003) Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmos Environ 37:73–84

    Article  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Article  Google Scholar 

  • Gill GA, Fitzgerald WF (1987) Picomolar mercury measurements in seawater and other materials using stannous chloride reduction and two-stage gold amalgamation with gas phase detection. Mar Chem 20:227–243

    Article  CAS  Google Scholar 

  • Gustin MS, Amos HM, Huang J, Miller MB, Heidecorn K (2015) Measuring and modeling mercury in the atmosphere: a critical review. Atmos Chem Phys 15:5697–5713

    Article  CAS  Google Scholar 

  • Jaffe D, Prestbo E, Swartzendruber P, Weiss-Penzias P, Kato S, Takami A, Hatakeyama S, Kajii Y (2005) Export of atmospheric mercury from Asia. Atmos Environ 39:3029–3038

    Article  CAS  Google Scholar 

  • Kim JP, Fitzgerald WF (1986) Sea–air partitioning of mercury in the equatorial Pacific Ocean. Science 231:1131–1133

    Article  CAS  Google Scholar 

  • Kuss J, Schneider B (2007) Variability of the gaseous elemental mercury sea–air flux of the Baltic Sea. Environ Sci Technol 41:8018–8023

    Article  CAS  Google Scholar 

  • Kuss J, Holzmann J, Ludwig R (2009) An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation. Environ Sci Technol 43:3183–3186

    Article  CAS  Google Scholar 

  • Kuss J, Zülicke C, Pohl C, Schneider B (2011) Atlantic mercury emission determined from continuous analysis of the elemental mercury sea–air concentration difference within transects between 50° N and 50° S. Global Biogeochem Cycles, 25. doi: 10.1029/2010GB003998.

  • Lanzillotta E, Ceccarini C, Ferrara R (2002) Photo-induced formation of dissolved gaseous mercury in coastal and offshore seawater of the Mediterranean basin. Sci Total Environ 300:179–187

    Article  CAS  Google Scholar 

  • Laurier FJG, Mason RP, Gill GA, Whalin L (2004) Mercury distributions in the North Pacific Ocean—20 years of observations. Mar Chem 90:3–19

    Article  CAS  Google Scholar 

  • Lei YT, Liu M, Chen LG, Xie DH, Lin DZ, Zhao MJ, Zhang YQ, Sun JR (2015) Variation characteristics of total gaseous mercury at Wuzhi Mountain (Wuzhishan) background station in Hainan. Environ Sci 36:817–823 (in Chinese with English abstract)

    Google Scholar 

  • Mason RP, Fitzgerald WF (1993) The distribution and biogeochemical cycling of mercury in the Equatorial Pacific Ocean. Deep-Sea Res 40:1897–1924

    Article  CAS  Google Scholar 

  • Mason RP, Sullivan KA (1999) The distribution and speciation of mercury in the South and Equatorial Atlantic. Deep-Sea Res 46:937–956

    CAS  Google Scholar 

  • Mason RP, Rolfhus KR, Fitzgerald WF (1995) Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic. Water Air Soil Pollut 80:665–677

    Article  CAS  Google Scholar 

  • Mason RP, Rolfhus KR, Fitzgerald WF (1998) Mercury in the North Atlantic. Mar Chem 61:37–53

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Sheu GR (1999) Mercury in the Chesapeake Bay. Mar Chem 65:77–96

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Sheu G-R (2001) Mercury in the Atlantic Ocean: factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep-Sea Res 48:2829–2853

    CAS  Google Scholar 

  • Mason RP, Choi AL, Fitzgerald WF, Hammerschmidt CR, Lamborg CH, Soerensen AL, Sunderland EM (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res 119:101–117

    Article  CAS  Google Scholar 

  • Nguyen HT, Kim KH, Kim MY, Hong S, Youn YH, Shon ZH, Lee JS (2007) Monitoring of atmospheric mercury at a global atmospheric watch (GAW) site on An-Myun Island, Korea. Water Air Soil Pollut 185:149–164

    Article  CAS  Google Scholar 

  • Nguyen HT, Kim MY, Kim KH (2010) The influence of long-range transport on atmospheric mercury on Jeju Island, Korea. Sci Total Environ 408:1295–1307

    Article  CAS  Google Scholar 

  • O’Driscoll NJ, Beauchamp S, Siciliano SD, Rencz AN, Lean DRS (2003) Continuous analysis of dissolved gaseous mercury (DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia: evaluating mercury flux models with quantitative data. Environ Sci Technol 37:2226–2235

    Article  Google Scholar 

  • Qureshi A, O’Driscoll NJ, MacLeod M, Neuhold YM, Hungerbühler K (2010) Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways. Environ Sci Technol 44:644–649

    Article  CAS  Google Scholar 

  • Qureshi A, MacLeod M, Sunderland E, Hungerbühler K (2012) Exchange of elemental mercury between the oceans and the atmosphere. In: Liu GL, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, USA

    Google Scholar 

  • Rolfhus KR, Fitzgerald WF (2004) Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater. Mar Chem 90:125–136

    Article  CAS  Google Scholar 

  • Rolfhus KR, Lamborg CH, Fitzgerald WF, Balcom PH (2003) Evidence for enhanced mercury reactivity in response to estuarine mixing. J Geophys Res 108:3353

    Article  Google Scholar 

  • Schartup AT, Ndu UC, Balcom PH, Mason RP, Sunderland EM (2015) Contrasting effects of marine and terrestrially derived dissolved organic matter on mercury speciation and bioavailability in seawater. Environ Sci Technol 49:5965–5972

    Article  CAS  Google Scholar 

  • Soerensen AL, Skov H, Jacob DJ, Soerensen BT, Johnson MS (2010) Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer. Environ Sci Technol 44:7425–7430

    Article  CAS  Google Scholar 

  • Soerensen AL, Mason RP, Balcom PH, Sunderland EM (2013) Drivers of surface ocean mercury concentrations and air–sea exchange in the West Atlantic Ocean. Environ Sci Technol 47:7757–7765

    Article  CAS  Google Scholar 

  • Soerensen AL, Mason RP, Balcom PH, Jacob DJ, Zhang YX, Kuss J, Sunderland EM (2014) Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean. Environ Sci Technol 48:11312–11319

    Article  CAS  Google Scholar 

  • Tseng CM, Liu CS, Lamborg C (2012) Seasonal changes in gaseous elemental mercury in relation to monsoon cycling over the Northern South China Sea. Atmos Chem Phys 12:7341–7350

    Article  CAS  Google Scholar 

  • Tseng CM, Lamborg CH, Hsu SC (2013) A unique seasonal pattern in dissolved elemental mercury in the South China Sea, a tropical and monsoon-dominated marginal sea. Geophys Res Lett 40:167–172

    Article  CAS  Google Scholar 

  • USEPA (1999) Compendium of methods for the determination of inorganic compounds in ambient air. Chapter IO-5: sampling and analysis for atmospheric mercury. EPA/625/R-96/010a.

  • USEPA (2002) Method 1631, Revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. EPA-821-R-02-019.

  • Wang F, Saiz-Lopez A, Mahajan AS, Gómez Martín JC, Armstrong D, Lemes M, Hay T, Prados-Roman C (2014) Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway. Atmos Chem Phys 14:1323–1335

    Article  CAS  Google Scholar 

  • Wang CJ, Wang ZW, Ci ZJ, Zhang XS, Tang X (2016) Spatial-temporal distributions of gaseous element mercury and particulate mercury in the Asian marine boundary layer. Atmos Environ 126:107–116

    Article  CAS  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and sea exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Weiss-Penzias PS, Williams EJ, Lerner BM, Bates TS, Gaston C, Prather K, Vlasenko A, Li SM (2013) Shipboard measurements of gaseous elemental mercury along the coast of Central and Southern California. J Geophys Res 118:208–219

    CAS  Google Scholar 

  • Whalin L, Kim EH, Mason R (2007) Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar Chem 107:278–294

    Article  CAS  Google Scholar 

  • Zhang CL, Huang H, Ye C, Huang LM, Li XB, Lian JS, Liu S (2013) Diurnal and seasonal variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan Island, South China. Sea Deep-Sea Res 96:65–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Key Basic Research Program of China (No. 2013CB430002), National Natural Science Foundation of China (Nos. 41203068, 41573117, 41176066, and 41371461), and Young Scientists Fund of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (No. RCEES-QN-20130048F). We thank Prof. Hui Huang and Prof. Weihua Zhou and the staff of the Tropical Marine Biological Research Station (Sanya) of the South China Sea Institute of Oceanology (Guangzhou), Chinese Academy of Sciences, for their assistance.We thank the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijia Ci.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, Z., Zhang, X. & Wang, Z. Air–sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China. Environ Sci Pollut Res 23, 11323–11329 (2016). https://doi.org/10.1007/s11356-016-6346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6346-5

Keywords

Navigation