Skip to main content

Advertisement

Log in

Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Exposure of human neuronal SK-N-BE cells to sodium arsenate (AsV 0.1–400 μM; 48 h) induced a biphasic toxic effect evoking hormesis. Indeed, at low concentrations, AsV stimulates cell proliferation visualized by phase contrast microscopy, whereas at high concentrations, an induction of cell death associated with a loss of cell adhesion was observed. These side effects were confirmed with crystal violet test, cell cycle analysis, evaluation of the percentage of Ki67 positive cells, and staining with propidium iodide. The impact of AsV on mitochondrial functions, which was determined by the MTT assay, the measurement of mitochondrial transmembrane potential with DiOC6(3), and the rate of mitochondrial ATP, also support an hormesis process. In addition, in the presence of high concentrations of AsV, a significant decrease of the protein expression of OXPHOS complexes of the respiratory chain was observed by western blot supporting that AsV-induced cell death is associated with mitochondrial alterations. Therefore, there are some evidences of hormesis on AsV-treated SK-N-BE cells, and at high concentrations, the mitochondria are a target of toxicity induced by AsV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AsV:

Sodium arsenate

DMEM:

Dulbecco’s Modified Eagle Medium

PI:

Propidium iodide

ΔΨ m :

Mitochondrial transmembrane potential

References

  • Breuer ME, Koopman WJ, Koene S et al (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 51:27–34. doi:10.1016/j.nbd.2012.03.007

    Article  CAS  Google Scholar 

  • Chiou H-Y, Chiou S-T, Hsu Y-H et al (2001) Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol 153:411–418

    Article  CAS  Google Scholar 

  • Cottet-Rousselle C, Ronot X, Leverve XMJ (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytom A 79:405–25

    Article  Google Scholar 

  • Dakeishi M, Murata K, Grandjean P (2006) Environmental health: a global long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ Heal 7:1–7. doi:10.1186/1476-069X-5-Received

    Google Scholar 

  • Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256. doi:10.1016/j.tins.2008.02.008.The

    Article  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–12

    Article  CAS  Google Scholar 

  • Hong G-M, Bain LJ (2012) Arsenic exposure inhibits myogenesis and neurogenesis in P19 stem cells through repression of the β-catenin signaling pathway. Toxicol Sci 129:146–56. doi:10.1093/toxsci/kfs186

    Article  CAS  Google Scholar 

  • Inauen J, Tobias R, Mosler H (2013) Predicting water consumption habits for seven arsenic-safe water options in Bangladesh. BMC Public Health 13:417

    Article  Google Scholar 

  • Jing J, Zheng G, Liu M et al (2012) Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology 33:1230–8. doi:10.1016/j.neuro.2012.07.003

    Article  CAS  Google Scholar 

  • Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518. doi:10.1038/nrn2417.MITOCHONDRIAL

    Article  CAS  Google Scholar 

  • Kumar P, Gao Q, Ning Y et al (2008) Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol Cancer Ther 7:2060–9. doi:10.1158/1535-7163.MCT-08-0287

    Article  CAS  Google Scholar 

  • Li X, Ding XATE (2003) Arsenic trioxide induces apoptosis in pancreatic cancer cells via c. Pancreas 27:147–9

    Google Scholar 

  • Liu S, Piao F, Sun X et al (2012) Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 33:1033–9. doi:10.1016/j.neuro.2012.04.020

    Article  CAS  Google Scholar 

  • Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye GRJ (1995) Kinetics of plasma membrane and mitochondrial alterations in cells. Cytometry 21:275–83

    Article  CAS  Google Scholar 

  • Luo J, Qiu Z, Shu W et al (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–5. doi:10.1016/j.toxlet.2008.10.029

    Article  CAS  Google Scholar 

  • Ma DC, Sun YH, Chang KZ, Ma XF, Huang SL, Bai YH, Kang J, Liu YGCJ (1998) Selective induction of apoptosis of NB4 cells from G2 + M phase by so. Eur J Haematol 61:27–35

    Article  CAS  Google Scholar 

  • Martinez-Finley EJ, Ali A-MS, Allan AM (2009) Learning deficits in C57BL/6J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol Biochem Behav 94:271–7. doi:10.1016/j.pbb.2009.09.006

    Article  CAS  Google Scholar 

  • Naranmandura H, Xu S, Sawata T et al (2011) Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA III)-induced cytotoxicity. Chim resaerch Toxicol 24:1094–1103

    Article  CAS  Google Scholar 

  • Nury T, Samadi M, Varin A, Lopez T, Zarrouk A, Boumhras M, Riedinger JM, Masson D, Vejux ALG (2013) Thomas1.pdfBiological activities of the LXRα and β agonist, 4β-hydroxycholesterol, and of its isomer, 4α-hydroxycholesterol, on oligodendrocytes: effects on cell growth and viability, oxidative and inflammatory status. Biochimie 95:518–30

    Article  CAS  Google Scholar 

  • O’Bryant SE, Edwards M, Menon CV et al (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8:861–74. doi:10.3390/ijerph8030861

    Article  Google Scholar 

  • P Grandjean PL (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  Google Scholar 

  • Ragot K, Mackrill JJ, Zarrouk A et al (2013) Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem Pharmacol 86:67–79. doi:10.1016/j.bcp.2013.02.028

    Article  CAS  Google Scholar 

  • Scholzen T, Gerdes J (2000a) The Ki-67 protein: from the known and. J Cell Physiol 322:311–322

    Article  Google Scholar 

  • Scholzen T, Gerdes J (2000b) The Ki-67 protein from the known and the unknown. J Cell Physiol 182:311

    Article  CAS  Google Scholar 

  • Shen Z, Shen J, Li Q et al (2002) Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide. Esophageal Cancer 8:31–35

    Google Scholar 

  • Sidhu JS, Ponce RA, Vredevoogd MA et al (2006) Cell cycle inhibition by sodium arsenite in primary embryonic rat midbrain neuroepithelial cells. Toxicol Sci 89:475–84. doi:10.1093/toxsci/kfj032

    Article  CAS  Google Scholar 

  • Singh MK, Yadav SS, Gupta V, Khattri S (2013) Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complement Altern Med 13:193. doi:10.1186/1472-6882-13-193

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  • Tadepalle N, Koehler Y, Brandmann M et al (2014) Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 76:1–11. doi:10.1016/j.neuint.2014.06.013

    Article  CAS  Google Scholar 

  • Tournel G, Houssaye C, Humbert L et al (2011) Acute arsenic poisoning: clinical, toxicological, histopathological, and forensic features. J Forensic Sci 56(Suppl 1):S275–9. doi:10.1111/j.1556-4029.2010.01581.x

    Article  Google Scholar 

  • Tsai S-Y, Chou H-Y, The H-W et al (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24:747–53. doi:10.1016/S0161-813X(03)00029-9

    Article  CAS  Google Scholar 

  • Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS One 8:e73720. doi:10.1371/journal.pone.0073720

    Article  CAS  Google Scholar 

  • Vahter ME (2007) Interactions between arsenic-induced toxicity and nutrition in early life. J Nutr 137:2798–804

    CAS  Google Scholar 

  • Wang TS, Kuo CF, Jan KYHH (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by genera. J Cell Physiol 169:256–68

    Article  CAS  Google Scholar 

  • Wasserman GA, Liu X, Graziano JH (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115:285–9

    Article  CAS  Google Scholar 

  • Yen CC, Ho TJ, Wu CC, Chang CF, Chin Chuan S, Chen YW, Jinn TR, Lu TH, Cheng PW, Yi Chang S, Shing Hwa Liu CFH (2011) Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch Toxicol 85(565):575

    Google Scholar 

  • Zarrouk A, Vejux A, Nury T et al (2012) Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22:0, C24:0, or C26:0)-treated human neuronal cells (SK-NB-E). Oxid Med Cell Longev 2012:623257. doi:10.1155/2012/623257

    Article  Google Scholar 

  • Zhang L, Wang K, Zhao F et al (2012) Near infrared imaging of EGFR of oral squamous cell carcinoma in mice administered arsenic trioxide. PLoS One 7:e46255. doi:10.1371/journal.pone.0046255

    Article  CAS  Google Scholar 

  • Zhang J, Liu X, Zhao L et al (2013) Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of synthetase in mice brains. Neuroscience 241:52–8. doi:10.1016/j.neuroscience.2013.03.014

    Article  CAS  Google Scholar 

  • Zierold KM, Knobeloch L, Anderson H (2004) Prevalence of chronic diseases in adults exposed to drinking water. Am J Public Heal 94:1936–1937

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Université de Bourgogne (Dijon, France), and the Université de Monastir (Monastir, Tunisia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Kharroubi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharroubi, W., Ahmed, S.H., Nury, T. et al. Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level. Environ Sci Pollut Res 23, 8441–8452 (2016). https://doi.org/10.1007/s11356-016-6043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6043-4

Keywords

Navigation