Skip to main content
Log in

Impact of the biocide Irgarol on meiofauna and prokaryotes from the sediments of the Bizerte lagoon—an experimental study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The biocide Irgarol 1051 has been reported to have negative effects on a large number of living components including non-target organisms, but information on its impact on the marine meiofauna and benthic prokaryotes is completely lacking. Here, we report the results of long-term experimental studies in which we determined the effects of increasing Irgarol concentrations (from 11.5 to 315 ng g−1 sediment dry weight) on meiofauna and benthic prokaryotes. We found that this biocide had a significant impact on meiofauna abundance, even at the lowest concentrations, causing a drastic decline in the abundance of nematodes (the dominant meiofaunal taxon) and an increase of the relative importance of oligochaetes. Even if no direct effects of Irgarol were found on prokaryotic abundance and biomass, the molecular fingerprinting analyses (automated ribosomal intergenic spacer analysis) showed that the prokaryotic diversity was significantly altered by the biocide. The results of the present study indicate that Irgarol 1051 in marine sediments has a significant impact on the smallest eukaryotic and microbial components also at very low concentrations (ca 12 ng g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albanis TA, Lambropoulou DA, Sakkas VA, Konstantinou IK (2002) Antifouling paint booster biocide contamination in Greek marine sediments. Chemosphere 48:475–485

    Article  CAS  Google Scholar 

  • Alsterberg C, Sundbäck K, Larson F (2007) Direct and indirect effects of an antifouling biocide on benthic microalgae and meiofauna. J Exp Mar Biol Ecol 351:56–72

  • Austen MC (1989) Factors affecting estuarine meiobenthic assemblage structure: a multifactorial microcosm experiment. J Exp Mar Biol Ecol 130:167–187

    Article  Google Scholar 

  • Bazes A, Silkina A, Defer D, Bernède-Bauduin C, Quéméner E, Brau JP, Bourgougnon N (2006) Active substances from Ceramium botryocarpum used as antifouling products in aquaculture. Aquaculture 258:664–674

    Article  CAS  Google Scholar 

  • Bazes A, Silkina A, Douzenel P, Faÿ F, Kervarec N, Morin D, Berge JP, Bourgougnon N (2009) Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J Appl Phycol 10:1573–1576

    Google Scholar 

  • Bérard A, Dorigo U, Mercier I, Becker-van Slooten K, Grandjean D, Leboulanger C (2003) Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53:935–944

    Article  Google Scholar 

  • Bhosle N, Garg A, Jadhav S, Harji R, Sawant S, Venket K, Anil AC (2004) Butyltins in water, biofilm and sediments of the west coast of India. Chemosphere 57:897–907

    Article  CAS  Google Scholar 

  • Biselli S, Bester K, Huhnerfuss H, Fent K (2000) Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Mar Pollut Bull 40:233–243

    Article  CAS  Google Scholar 

  • Bowman JC, Readman JW, Zhou JL (2003) Seasonal variability in the concentrations of Irgarol 1051 in Brighton Marina, UK; including the impact of dredging. Mar Pollut Bull 46:444–451

    Article  CAS  Google Scholar 

  • Boxall ABA, Comber SD, Conrad AU, Howcroft J, Zaman N (2000) Inputs, monitoring and fate modelling of antifouling biocides in UK Estuaries. Mar Pollut Bull 40:898–905

    Article  CAS  Google Scholar 

  • Bragadin M, Cima F, Ballarin L, Manente S (2006) Irgarol inhibits the synthesis of ATP in mitochondria from rat liver. Chemosphere 65:1898–1903

    Article  CAS  Google Scholar 

  • Callow ME, Willingham GL (1996) Degradation of antifouling biocides. Biofouling 10:239–249

    Article  CAS  Google Scholar 

  • Cassi R, Tolosa I, Mora SD (2008) A survey of antifoulants in sediments from Ports and Marinas along the French Mediterranean coast. Mar Pollut Bull 56:1943–1948

    Article  CAS  Google Scholar 

  • Cheung KC, Wong MH, Yung YK (2003) Toxicity assessment of sediments containing tributyltin around Hong Kong harbour. Toxicol Lett 137:121–131

    Article  CAS  Google Scholar 

  • Ciba-Geigy (1995) Technical information bulletin. Ciba-Geigy, Basel

    Google Scholar 

  • Cresswell T, Richards JP, Glegg GA, Readman JW (2006) The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar Pollut Bull 52:1169–1175

    Article  CAS  Google Scholar 

  • Dafforn K, Lewis J, Johnston E (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465

    Article  CAS  Google Scholar 

  • Danovaro R (2010) Methods for the study of deep-sea sediments, their functioning and biodiversity. CRC Press, Boca Raton, p 428

    Google Scholar 

  • Danovaro R, Luna GM, Dell’anno A, Pietrangeli B (2006) Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl Environ Microbiol 72:5982–5989

    Article  CAS  Google Scholar 

  • Desai DV (2008) Impact of Irgarol 1051 on biofilm diatom and barnacle nauplii. International Conference on Biofouling and Ballast Water Management. National Institute of Oceanography, Dona Paula

    Google Scholar 

  • Evans SM, Birchenough AC, Brancata MS (2000) The TBT ban: out of the frying pan into the fire? Mar Pollut Bull 40:204–211

    Article  CAS  Google Scholar 

  • Fernández-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312

    Article  Google Scholar 

  • Fry JC (1990) Direct methods and biomass estimation. Methods Microbiol Acad Press 22:41–85

    Article  Google Scholar 

  • Gardinali PR, Plasencia M, Mack S, Poppell C (2002) Occurrence of Irgarol 1051 in coastal waters from Biscayne Bay, Florida, USA. Mar Pollut Bull 44:781–788

    Article  CAS  Google Scholar 

  • Gatidou G, Thomaidis NS (2007) Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85:184–191

    Article  CAS  Google Scholar 

  • Gatidou G, Kotrikla A, Rontogianni V, Thomaidis NS, Lekkas TD (2003) The toxic effects of the antifouling biocide Irgarol 1051 and its principal metabolite on the green alga Dunaliella tertiotecta. 8th International Conference on Environmental Science and Technology, Lemnos island, Greece

  • Gatidou G, Kotrikla A, Thomaidis NS, Lekkas TD (2004) Determination of two antifouling booster biocides and their degradation products in marine sediments by high performance liquid chromatography-diode array detection. Anal Chim Acta 505:153–159

    Article  CAS  Google Scholar 

  • Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63:443–450

    Article  CAS  Google Scholar 

  • Hall LW, Killen WD, Gardinali PR (2004) Occurrence of Irgarol 1051 and its major metabolite in Maryland waters of Chesapeake Bay. Mar Pollut Bull 48:554–562

    Article  CAS  Google Scholar 

  • Hellio C, Bourgougnon N, Le Gal Y (2000) Phenoloxidase (EC 1.14.18.1) from the byssus gland of Mytilus edulis: purification, partial characterization and application for screening products with potential antifouling activities. Biofouling 16:235–244

    Article  CAS  Google Scholar 

  • Hellio C, De La Broise D, Dufossé L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res 52:231–247

    Article  CAS  Google Scholar 

  • Hewson I, Fuhrman JA (2006) Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. Mar Ecol Prog Ser 306:79–86

    Article  CAS  Google Scholar 

  • Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol Annu Rev 21:67–175

    Google Scholar 

  • Hoberg J (2004) Fate and effects of Irgarol 1051 in marine microcosms. Springborn Smithers Laboratory Study number 13658-6241

  • Karlsson J, Ytreberg E, Eklund B (2010) Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ Pollut 158:681–687

    Article  CAS  Google Scholar 

  • Kemi (1992) Ecotoxicological evaluation of the antifouling compound 2-(tert-butylamino)-4-(cyclopropylamino)-6-methylthio)-1,3,5-triazine, Irgarol. National Chemical Ispectorate (KEMI), Solna

    Google Scholar 

  • Khandeparker L, Desai D, Shirayama Y (2005) Larval development and post-settlement metamorphosis of the barnacle Balanus albicostatus Pilsbry and the serpulid polychaete Pomatoleios kraussii Baird: impact of a commonly used antifouling biocide, Irgarol 1051. Biofouling 21(3/4):169–180

    Article  CAS  Google Scholar 

  • Kitada Y, Kawahata H, Suzuki A, Oomori T (2008) Distribution of pesticides and bisphenol-A in sediments collected from rivers adjacent to coral reefs. Chemosphere 71:2082–2090

    Article  CAS  Google Scholar 

  • Klamer HJ, Leonards PE, Lamoree MH, Villerius LA, Kerman JE, Bakker JF (2005) A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58:1579–1587

    Article  CAS  Google Scholar 

  • Knutson S, Downs CA, Richmond RH (2011) Concentrations of Irgarol in selected marinas of Oahu, Hawaii and effects on settlement of coral larval. Ecotoxicology 21:1–8

    Article  Google Scholar 

  • Kobayashi N, Okamura H (2002) Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44:748–751

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  CAS  Google Scholar 

  • Lambert SJ, Thomas KV, Davy AJ (2006) Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and Diuron to freshwater macrophytes. Chemosphere 63:734–743

    Article  CAS  Google Scholar 

  • Lang C (2010) Etat écologique des sédiments de deux lacs de montagne indiqué par les oligochètes et les chironomides. Bull Soc Vaud Sci Nat 92:47–60

    Google Scholar 

  • Liu D, Maguire JR, Lau LY, Pacepavicius JG, Okamura H, Aoyama I (1997) Transformation of the new antifouling compound Irgarol 1051 by Phanerochaete chrysosporium. Water Res 31:2363–2369

    Article  CAS  Google Scholar 

  • Luna GM, Dell’Anno A, Danovaro R (2006) DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environ Microbiol 8:308–320

    Article  CAS  Google Scholar 

  • Macinnis-Ng CMO, Rahlf-Peter J (2003) Short-term response and recovery of Zostera capricorni photosynthesis after herbicide exposure. Aquat Bot 76:1–15

    Article  CAS  Google Scholar 

  • Martinez K, Barcelo D (2001) Determination of antifouling pesticides and their degradation products in marine sediments by means of ultrasonic extraction and HPLC-APCI-MS. Fresenius J Anal Chem 370:940–945

    Article  CAS  Google Scholar 

  • Mohr S, Schroder H, Feibicke M, Berghahn R, Arp W, Nicklisch A (2008) Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms. Aquat Toxicol 90:109–120

    Article  CAS  Google Scholar 

  • Murphy RJ, Tolhurst TJ (2009) Effects of experimental manipulation of algae and fauna on the properties of intertidal soft sediments. J Exp Mar Biol Ecol 379:77–84

    Article  Google Scholar 

  • Nilsson P, Sundbäck K, Jönsson B (1993) Effects of the brown shrimp Crangon crangon (L) on endobenthic macrofauna, meiofauna and meiofaunal grazing rates. Neth J Sea Res 31:95–106

    Article  Google Scholar 

  • Nystrom B, Becker-Van Slooten K, Berard A, Grandjean D, Druart JC, Leboulanger C (2002) Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water Res 36:2020–2028

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Liu D, Maguire J, Pacepavicius GJ, Lau YL (2000a) Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 34:3523–3530

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M (2000b) Phytotoxicity of the new antifouling compound Irgarol 1051 and a major degradation product. Mar Pollut Bull 40:754–763

    Article  CAS  Google Scholar 

  • Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46:945–951

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Ono Y, Nishida T (2003) Antifouling herbicides in the coastal waters of western Japan. Mar Pollut Bull 47:59–67

    Article  CAS  Google Scholar 

  • Owen R, Knap A, Toaspern M, Carberry K (2002) Inhibition of coral photosynthesis by the antifouling herbicide Irgarol 1051. Mar Pollut Bull 44:623–632

    Article  CAS  Google Scholar 

  • Pearce F (1995) Alternative antifouling widespread in Europe. New Scientist

  • Pillay D, Branch GM, Forbes AT (2007) Effects of Callianassa kraussi on microbial biofilms and recruitment of macrofauna: a novel hypothesis for adult-juvenile interactions. Mar Ecol Prog Ser 347:1–14

    Article  Google Scholar 

  • Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67:880–887

    Article  CAS  Google Scholar 

  • Ranke J (2002) Persistence of antifouling agents in the marine biosphere. Environ Sci Technol 36:1539–1545

    Article  CAS  Google Scholar 

  • Sapozhnikova Y, Wirth E, Schiff K, Brown J, Fulton M (2007) Antifouling pesticides in the coastal waters of Southern California. Mar Pollut Bull 54:1972–1978

    Article  CAS  Google Scholar 

  • Schratzberger M, Wall CM, Reynolds WJ, Reed J, Waldock MJ (2002) Effects of paint-derived tributyltin (TBT) on structure of estuarine nematode assemblages in experimental microcosms. J Exp Mar Biol Ecol 272:217–235

    Article  Google Scholar 

  • Sheikh MA, Higuchi T, Fujimura H, Imo TS, Miyagi T, Oomori T (2009) Contamination and impacts of new antifouling biocide Irgarol-1051 on subtropical coral reef waters. Int J Environ Sci Technol 6:353–358

    Article  CAS  Google Scholar 

  • Stiger V, Deslandes E, Payri CE (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot Mar 47:402–409

    Article  CAS  Google Scholar 

  • Tóth S, Becker-van SK, Spack L, Alencastro LF, Tarradellas J (1996) Irgarol 1051: an antifouling compound in freshwater, sediment and biota of Lake Geneva. Bull Environ Contam Toxicol 57:426–433

    Article  Google Scholar 

  • Tsang VWH, Lei NY, Michael Hon-Wah Lam MHW (2009) Determination of Irgarol-1051 and its related s-triazine species in coastal sediments and mussel tissues by HPLC-ESI-MS/MS. Mar Pollut Bull 58:1462–1471

    Article  CAS  Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC, Callow ME (2005) Pyrithione as antifoulants: environmental fate and loss of toxicity. Biofouling 21:31–40

    Article  CAS  Google Scholar 

  • Ustach JF (1982) Algae, bacteria and detritus as foo for the harpacricoid copepod, heteropsyllus pseudonunni. J Exp Mar Biol Ecol 64:203–214

    Article  Google Scholar 

  • Wang TN (2011) Efficacy of NaCl brine for treatment of ballast water against freshwater invasions. Thesis (M.Sc.) Faculty of Graduate Studies, Great Lakes Institute for Environmental Research, The University of Windsor, Windsor

    Google Scholar 

  • Wiederholm T (1980) Use of benthos in lake monitoring. J Water Pollut Control Fed 52:537–547

    CAS  Google Scholar 

  • Zamora-Ley IM, Gardinali PR, Jochem FJ (2006) Assessing the effects of Irgarol 1051 on marine phytoplankton populations in Key Largo Harbor, Florida. Mar Pollut Bull 52:935–941

    Article  CAS  Google Scholar 

  • Zhang Z, Hibberd A, Zhou JL (2008) Analysis of emerging contaminants in sewage effluent and river water: comparison between spot and passive sampling. Anal Chim Acta 607:37–44

    Article  CAS  Google Scholar 

  • Zhou JL (2008) Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England. Sci Total Environ 406:239–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of High Education and Scientific Research, the Institute for Coastal Marine Environment (IAMC)—CNR, the Polytechnic University of Marche, and the Faculty of Sciences of Bizerte. We are grateful to Mario Sprovieri, IMAC—CNR, for his expert advices for chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Hannachi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannachi, A., Elarbaoui, S., Khazri, A. et al. Impact of the biocide Irgarol on meiofauna and prokaryotes from the sediments of the Bizerte lagoon—an experimental study. Environ Sci Pollut Res 23, 7712–7721 (2016). https://doi.org/10.1007/s11356-015-5936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5936-y

Keywords

Navigation