Skip to main content

Advertisement

Log in

Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biogeochemical cycling of sulfur and selenium (Se) could play an important role in methylmercury (MeHg) dynamics in soil, while their potential effects on MeHg production in rice paddy soil are less understood. The main objective of this study was to explore the effects of sulfate and selenite on net MeHg production in contaminated rice paddy soil, characterized with massive MeHg production and thus MeHg accumulation in rice. A series of microcosm incubation experiments were conducted using a contaminated paddy soil amended with sulfate and/or selenite, in which sulfate-reducing bacteria were mainly responsible for MeHg production. Our results demonstrated that sulfate addition reduced solid and dissolved MeHg levels in soils by ≤18 and ≤25 %, respectively. Compared to sulfate, selenite was more effective in inhibiting net MeHg production, and the inhibitory effect depended largely on amended selenite doses. Moreover, sulfate input played a dual role in affecting Hg-Se interactions in soil, which could be explained by the dynamics of sulfate under anoxic conditions. Therefore, the effects of sulfate and selenium input should be carefully considered when assessing risk of Hg in anoxic environments (e.g., rice paddy field and wetland).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Björnberg A, Håkanson L, Lundbergh K (1988) A theory on the mechanisms regulating the bioavailability of mercury in natural-waters. Environ Pollut 49(1):53–61

    Article  Google Scholar 

  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ Sci Technol 42(1):326–332

    Article  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464

    Article  CAS  Google Scholar 

  • Fulda B, Voegelin A, Kretzschmar R (2013) Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ Sci Technol 47(22):12775–12783

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in fresh-water sediments. Environ Sci Technol 26(11):2281–2287

    Article  CAS  Google Scholar 

  • Gilmour CC, Riedel GS, Ederington MC, Bell JT, Benoit JM, Gill GA, Stordal MC (1998) Methylmercury concentrations and production rates across a trophic gradient in the northern everglades. Biogeochemistry 40(2–3):327–345

    Article  CAS  Google Scholar 

  • Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J, Monperrus M, Guyoneaud R (2015) Relationships between bacterial energetic metabolism, mercury methylation potential, and hgcA/hgcB gene expression in Desulfovibrio dechloroacetivorans BerOc1. Environ Sci Pollut Res 22(18):13764–13771

    Article  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46(5):2715–2723

    Article  CAS  Google Scholar 

  • Han S, Obraztsova A, Pretto P, Deheyn DD, Gieskes J, Tebo BM (2008) Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Mar Chem 111(3–4):214–220

    Article  CAS  Google Scholar 

  • Hu Z, Xu C, Zhao Y, Wang T, Zhang H, Cao Z (2002) Dynamics of atmospheric sulphur deposition on rapeseed/rice rotation in selected area of South China. China Environ Sci 22(1):11–15 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Jain R, Matassa S, Singh S, van Hullebusch ED, Esposito G, Lens PNL (2015) Reduction of selenite to elemental selenium nanoparticles by activated sludge. Environ Sci Pollut Res. doi:10.1007/s11356-015-5138-7

    Google Scholar 

  • Jayaweera GR, Biggar JW (1996) Role of redox potential in chemical transformations of selenium in soils. Soil Sci Soc Am J 60:1056–1063

    Article  CAS  Google Scholar 

  • Jin LJ, Guo P, Xu XQ (1999) Effect of selenium on mercury methylation in facultative lake sediments. Toxicol Environ Chem 69:255–61

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB, Westlund PO, Shchukarev A, Lundberg E, Björn E (2012) Mercury methylation rates for geochemically relevant HgII species in sediments. Environ Sci Technol 46(21):11653–11659

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921

    Article  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66(6):2430–2437

    Article  CAS  Google Scholar 

  • Li WC, Tse HF (2015) Health risk and significance of mercury in the environment. Environ Sci Pollut Res 22(1):192–201

    Article  CAS  Google Scholar 

  • Liang L, Horvat M, Feng X, Shang L, Li H, Pang P (2004) Re-evaluation of distillation and comparison with HNO3 leaching/solvent extraction for isolation of methylmercury compounds from sediment/soil samples. Appl Organomet Chem 18(6):264–270

    Article  CAS  Google Scholar 

  • Liu C, Cao S, Chen G, Wu X (1990) Sulphur in the agriculture of China. Acta Pedol Sin 27(4):398–404 (in Chinese with English abstract)

    Google Scholar 

  • Liu Y, Zheng Y, Zhang L, He J (2014) Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. Environ Sci Pollut Res 21(2):1339–1348

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Cai Y, Wang D, Li P, Shang L, Sommar J (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem 58(8):4951–4958

    Article  CAS  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11

    Article  CAS  Google Scholar 

  • Michael PS, Fitzpatrick R, Reid R (2015) The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma 255–256:42–49

    Article  Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55(9):2333–2343

    CAS  Google Scholar 

  • Qiu G, Feng X, Meng B, Jonas S, Gu C (2012) Environmental geochemistry of an active Hg mine in Xunyang, Shaanxi province, China. Appl Geochem 27(12):2280–2288

    Article  CAS  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Parkash S, Srivastatva MM (1996) Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem Toxicol 34(9):883–886

    Article  CAS  Google Scholar 

  • Skyllberg U, Drott A (2010) Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)- an EXAFS study. Environ Sci Technol 44(4):1254–1259

    Article  CAS  Google Scholar 

  • St. Pierre KA, Chétélat J, Yumvihoze E, Poulain AJ (2014) Temperature and the sulfur cycle control monomethylmercury cycling in high arctic coastal marine sediments from Allen Bay, Nunavut, Canada. Environ Sci Technol 48(5):2680–2687

    Article  CAS  Google Scholar 

  • Truong HYT, Chen YW, Nelson B (2013) Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Sci Total Environ 449:373–384

    Article  CAS  Google Scholar 

  • Truong HYT, Chen YW, Saleh M, Nehzati S, George GN, Pickering IJ, Belzile N (2014) Proteomics of Desulfovibrio desulfuricans and X-ray absorption spectroscopy to investigate mercury methylation in the presence of selenium. Metallomics 6:465–475

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293

    Article  CAS  Google Scholar 

  • Wang X, Ye Z, Li B, Huang L, Meng M, Shi J, Jiang G (2014a) Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. Environ Sci Technol 48(3):1878–1885

    Article  CAS  Google Scholar 

  • Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014b) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114(2):271–278

    Article  CAS  Google Scholar 

  • Weber FA, Voegelin A, Kretzschmar R (2009) Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochim Cosmochim Acta 73(19):5513–5527

    Article  CAS  Google Scholar 

  • Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium, mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92

    Article  CAS  Google Scholar 

  • Zhang L, Jin Y, Lu J, Zhang C (2009) Concentration, distribution and bioaccumulation of mercury in the Xunyang mercury mining area, Shaanxi province, China. Appl Geochem 24(5):950–956

    Article  CAS  Google Scholar 

  • Zhang H, Feng X, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44(12):4499–4504

    Article  CAS  Google Scholar 

  • Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46(18):10040–10046

    CAS  Google Scholar 

  • Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H (2014) Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 48(16):9133–9141

    Article  CAS  Google Scholar 

  • Zhao J, Gao Y, Li Y, Hua Y, Peng X, Dong Y, Li B, Chen C, Chai Z (2013) Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environ Res 125:75–81

    Article  CAS  Google Scholar 

  • Zhao J, Li Y, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.) in correlation with mercury species and exposure level. Metallomics 6(10):1951–1957

    Article  CAS  Google Scholar 

  • Zhou J, Liu H, Du B, Shang L, Yang J, Wang Y (2015) Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environ Sci Pollut Res 22(8):6144–6154

    Article  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Zhao F, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided to Huan Zhong by the National Natural Science Foundation of China (41273087). Ping Li was supported by the National Natural Science Foundation of China (41373135). And financial support was provided to Fei Dang by the Natural Science Foundation of Jiangsu Province (BK20131041). Finally, we are grateful for the valuable comments from anonymous reviewers on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhong.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 699 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dang, F., Zhong, H. et al. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions. Environ Sci Pollut Res 23, 4602–4608 (2016). https://doi.org/10.1007/s11356-015-5696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5696-8

Keywords

Navigation