Skip to main content

Advertisement

Log in

Indoor air quality at life and work environments in Rome, Italy

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The air quality of three different microenvironments (school, dwelling, and coffee bar) located in the city of Rome, Italy, was assessed. Indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 particles were determined during an intensive 3-week sampling campaign conducted in March 2013. In interiors, total particulate PAHs ranged from 1.53 to 4.96 ng/m3 while outdoor air contained from 2.75 to 3.48 ng/m3. In addition, gaseous toxicants, i.e., NO2, NO x , SO2, O3, and BTEX (benzene, toluene, ethyl-benzene, and xylene isomers), were determined both in internal and external air. To solve the origin of indoor and outdoor PAHs, several source apportionment methods were applied. Multivariate analysis revealed that emissions from motor vehicles, biomass burning for heating purposes, and soil resuspension were the major sources of PAHs in the city. No linear correlation was established between indoor and outdoor values for PM2.5 and BTEX; the respective indoor/outdoor concentration ratios exceed unity except for PM2.5 in the no smoking home and benzene in all school floors. This suggests that important internal sources such as tobacco smoking, cleaning products, and resuspension dust contributed to indoor pollution. Using the monitoring stations of ARPA Lazio regional network as reference, the percentage within PAH group of benzo[a]pyrene, which is the WHO marker for the carcinogenic risk estimates, was ca. 50 % higher in all locations investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BaA:

Benz[a]anthracene

CH:

Chrysene

BbF:

Benzo[b]fluoranthene

BjF:

Benzo[j]fluoranthene

BkF:

Benzo[k]fluoranthene

BeP:

Benzo[e]pyrene

BaP:

Benzo[a]pyrene

PE:

Perylene

IP:

Indeno[1,2,3-cd]pyrene

DBA:

Dibenz[ah]anthracene

BPE:

Benzo[ghi]perylene

∑PAHs:

Total PAH

HCB-B:

CB home (bedroom)

HBC-D:

CB home (dining room)

HPR:

PR home

IGM:

Massaia Institute (school)

BAR:

(Coffee bar)

BEL:

Belloni-Cinecittà ARPA Lazio station

ARPA:

ARPA Lazio Region Network, average three urban stations

References

  • Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2007) Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci Total Environ 384:280–292

    Article  CAS  Google Scholar 

  • Almeida SM, Canha N, Silva A, Freitas M, Pegas P, Alves C, Evtyugina M, Pio CA (2011) Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos Environ 45:7594–7599

    Article  CAS  Google Scholar 

  • Alves C, Nunes T, Silva J, Duarte M (2013) Comfort parameters and particulate matter (PM10 and PM2.5) in school classrooms and outdoor air. Aerosol Air Qual Res 13:1521–1535

    CAS  Google Scholar 

  • Barrese E, Gioffrè A, Scarpelli M, Turbante D, Trovato R, Iavicoli S (2014) Indoor pollution in work office: VOCs, formaldehyde and ozone by printer. Occup Dis Environ Med 2:49–55

    Article  Google Scholar 

  • Bernard NL, Gerber MJ, Astre CM, Saintot MJ (1999) Ozone measurement with passive samplers: validation and use for ozone pollution assessment in Montpellier, France. Environ Sci Technol 33:217–222

    Article  CAS  Google Scholar 

  • Bertoni G, Tappa R, Allegrini I (2001) The internal consistency of the ‘Analyst’ diffusive sampler—a long-term field test. Chromatographia 54:653–657

    Article  CAS  Google Scholar 

  • Breysse PN, Buckley TJ et al (2005) Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner-city Baltimore. Environ Res 98:167–176

    Article  CAS  Google Scholar 

  • Bruno P, Caselli M, De Gennaro G, Iacobellis S, Tutino M (2008) Monitoring of volatile organic compounds in non-residential indoor environments. Indoor Air 18:250–256

    Article  CAS  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    Article  CAS  Google Scholar 

  • Castro D, Slezakova K, Delerue-Matos C, Alvim-Ferraz M, Morais S, do Carmo Pereira M (2011) Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: levels, phase distributions and health risk. Atmos Environ 45:1799–1808

    Article  CAS  Google Scholar 

  • Cecinato A, Ciccioli P, Brancaleoni E, Zagari M (1998) PAH and nitro-PAH in the urban atmophere of Rome and Milan. Ann Chim 12:1133–1141

    Google Scholar 

  • Cecinato A, Romagnoli P et al (2012) EXPAH, Eds. Technical Report on activities carried out by CNR-IIA and INAIL—ex ISPESL in the frame of the (Actions 3.3) http://www.ispesl.it/expah/documenti

  • Cecinato A, Balducci C, Romagnoli P, Perilli M (2012b) Airborne psychotropic substances in eight Italian big cities: burdens and behaviors. Environ Pollut 171:140–147

    Article  CAS  Google Scholar 

  • Cecinato A, Balducci C, Romagnoli P, Perilli M (2014a) Behaviors of psychotropic substances in indoor and outdoor environments of Rome, Italy. Environ Sci Pollut Res 21:9193–9200

    Article  CAS  Google Scholar 

  • Cecinato A, Romagnoli P, Perilli M, Patriarca C, Balducci C (2014b) Psychotropic substances in indoor environments. Environ Int 71:88–93

    Article  Google Scholar 

  • Cecinato A, Guerriero E, Balducci C, Muto V (2014c) Use of the PAH fingerprints for identifying pollution sources. Urban Clim 10:630–643

    Article  Google Scholar 

  • Chalbot MC, Vei IC, Lianou M, Kotronarou A, Karakatsani A, Katsouyanni K, Hoek G, Kavouras IG (2012) Environmental tobacco smoke aerosol in a non-smoking households of patients with chronic respiratory diseases. Atmos Environ 62:82–88

    Article  CAS  Google Scholar 

  • Chang K-F, Fang G-C, Chen J-C, Wu Y-S (2004) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environ Pollut 142:388–396

    Article  CAS  Google Scholar 

  • Dallarosa JB, Teixeira EC, Pires M, Fachel J (2005) Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) using multivariate methods. Atmos Environ 39:6587–6596

    Article  CAS  Google Scholar 

  • Daresta BE, Liuzzi VC, De Gennaro G, De Giorgi C, De Luca F, Caselli M (2010) Evaluation of the toxicity of PAH mixtures and organic extract from Apulian particulate matter by the model system “Caenorhabditis elegans”. Fresenius Environ Bull 19:2002–2005

    CAS  Google Scholar 

  • De Gennaro G, Dambruoso PR, Demarinis LA, Di Gilio A, Giunga P, Tutino M, Marzocca A, Mazzone A, Palmisani J, Porcell F (2014) Indoor air quality in schools. Environ Chem Lett 12:467–482

    Article  CAS  Google Scholar 

  • De Santis F, Allegrini I, Fazio MC, Pasella D, Piredda R (1997) Development of a passive sampling technique for the determination of nitrogen dioxide and sulphur dioxide in ambient air. Anal Chim Acta 346:127–134

    Article  Google Scholar 

  • De Santis F, Dogeroglu T, Fino A, Menichelli S, Vazzana C, Allegrini I (2002) Laboratory development and field evaluation of a new diffusive sampler to collect nitrogen oxides in the ambient air. Anal Bioanal Chem 373:901–907

    Article  CAS  Google Scholar 

  • Delgado-Saborit JM, Stark C, Harrison RM (2011) Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int 37:383–392

    Article  CAS  Google Scholar 

  • Diapouli E, Chaloulakou A, Mihalopoulos N, Spirellis N (2008) Indoor and outdoor PM mass and number concentrations at schools in the Athenes area. Environ Monit Assess 136:13–20

    Article  CAS  Google Scholar 

  • Dimitriou K, Kassomenos P (2014) Indicators reflecting local and transboundary sources of PM2.5 and PMCOARSE in Rome—impacts in air quality. Atmos Environ 96:154–162

    Article  CAS  Google Scholar 

  • Fischer PH, Hoek G, van Reeuwijk H, Briggs DJ, Lebret EJ, van Wijnen H, Kingham S, Elliott PE (2000) Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmos Environ 34:3713–3722

    Article  CAS  Google Scholar 

  • Forastiere F, Stafoggia M, Picciotto S, Bellander T, D’Ippoliti D, Lancki T, von Klot S, Nyberg F, Peters A, Pokkanen J, Sunyer J, Perucci CA (2005) A case-crossover analysis of out of hospital coronary death and air pollution in Rome, Italy. Am J Respir Crit Care Med 172:1549–1555

    Article  Google Scholar 

  • Forastiere F, Stafoggia M, Berti M, Bisanti L, Cernigliaro A, Chiusolo M, Mallone S, Miglio R, Pandolfi P, Rognoni M, Serinelli M, Tessari R, Vigotti M, Perucci CA, SISTI Group (2008) Particulate matter and daily mortality: a case-crossover analysis of individual effect modifiers. Epidemiology 19:571–580

    Article  Google Scholar 

  • Gallego E, Roca FX, Guardino X, Rosell MG (2008) Indoor and outdoor BTX levels in Barcelona City metropolitan area and Catalan rural areas. J Environ Sci 20:1063–1069

    Article  CAS  Google Scholar 

  • Gee I-L, Watson AFR, Carrington J (2005) The contribution of environmental tobacco smoke to indoor pollution in pubs and bars. Indoor Built Environ 14:301–306

    Article  CAS  Google Scholar 

  • Gligorovski S (2016) Nitrous acid (HONO): an emerging indoor pollutant. J Photochem Photobiol A Chem 314:1–5

    Article  CAS  Google Scholar 

  • Guo H, Marawwska L, He C, Zhang YL, Ayoko G, Cao M (2010) Characterization of particle number concentrations and PM2.5 in a school: influence of outdoo air pollution on indoor air. Environ Sci 17:1268–1278

    CAS  Google Scholar 

  • Gustafson P, Ostman C, Sallsten G (2008) Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol 42:5074–5080

    Article  CAS  Google Scholar 

  • Hanedar A, Alp K, Kaynak B, Avşar E (2014) Toxicity evaluation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) at three stations in Istanbul, Turkey. Sci Total Environ 488–489:437–446

    Article  CAS  Google Scholar 

  • Helaleh MIH, Ngudiwaluyo S, Korenaga T, Tanaka K (2002) Development of passive sampler technique for ozone monitoring: estimation of indoor and outdoor ozone concentration. Talanta 58:649–659

    Article  CAS  Google Scholar 

  • Hodgson AT, Rudd AF, Beal D, Chandra S (2000) Volatile organic compound concentrations and emission rates in new manufactured and site-built houses. Indoor Air 10:178–192

    Article  CAS  Google Scholar 

  • Hoh E, Hunt RN, Quintana PJE, Zakarian JM, Chatfield DA, Wittry BC, Rodriguez E, Matt GE (2012) Environmental tabacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust. Environ Sci Tecnol 46:4174–4183

    Article  CAS  Google Scholar 

  • Huang YC, Ghio AJ (2006) Vascular effects of ambient pollutant particles and metals. Curr Vasc Pharmacol 4:199–208

    Article  CAS  Google Scholar 

  • Ilgen E, Karfich N, Levsen K, Angerer J, Schneider P, Heinrich J, Wichmann H-E, Dunemann L, Begerow J (2001) Aromatic hydrocarbons in the atmospheric environment: part I. Indoor versus outdoor sources, the influence of traffic. Atmos Environ 35:1235–1252

    Article  CAS  Google Scholar 

  • Kameda Y, Shirai J, Komai T, Nakanishi J, Masunaga S (2005) Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to human respiratory tract. Sci Total Environ 340:71–80

    Article  CAS  Google Scholar 

  • Kliucininkas L, Martuzevicius D, Krugly E, Prasauskas T, Kauneliene V, Molnar P, Strandberg B (2011) Indoor and outdoor concentrations of fine particles, particle-bound PAHs and volatile organic compounds in Kaunas Lithuania. J Environ Monit 13:182–191

    Article  CAS  Google Scholar 

  • Lai HK, Kendall M, Ferrier H et al (2004) Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmos Environ 38:6399–6410

    Article  CAS  Google Scholar 

  • Lee¸ K, Parkhurst W, Xue J, Ozkaynak H, Neuberg D, Spengler JD (2004) Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. J Air Waste Manage Assoc 54:352–359

    Article  Google Scholar 

  • Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particle and mortality: an exstended follow-up of the Harvard Six City study from 1974–2009. Environ Health Perspect 120:965–970

    Article  Google Scholar 

  • Lin C-C, Peng C-K (2010) Characterization of indoor PM10, PM2.5 and ultrafine particles in elementary school classrooms: a review. Environ Eng Sci 27:915–922

    Article  CAS  Google Scholar 

  • Liuzzi VC, Daresta BE, De Gennaro G, De Giorgi C (2011) Different effects of polycyclic aromatic hydrocarbons in artificial and in environmental mixtures on the free living nematode C. elegans. J Appl Toxicol 32:45–50

    Article  CAS  Google Scholar 

  • Lu H, Zhu L (2007) Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J Hazard Mater A 139:193–198

    Article  CAS  Google Scholar 

  • Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56:867–878

    Article  CAS  Google Scholar 

  • Marr LC, Dzepina K, Jimenez JL, Reisen F, Bethel HL, Arey J, Gaffney JS, Marley NA, Molina LT, Molina MJ (2006) Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmos Chem Phys 6:1733–1745

    Article  CAS  Google Scholar 

  • Martellini T, Giannoni M, Lepri L, Katsoyiannis A, Cincinelli A (2012) One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ Pollut 164:252–258

    Article  CAS  Google Scholar 

  • Martuzevicius D, Kliucininkas L, Prasauskas T, Krugly E, Kauneliene V, Strandberg B (2011) Resuspension of particulate matter and PAHs from street dust. Atmos Environ 45:310–317

    Article  CAS  Google Scholar 

  • Menichini E, Iacovella N, Turrio-Baldassarri L, Monfredini F (2007) Relationships between indoor and outdoor air pollution by carcinogenic PAHs and PCBs. Atmos Environ 41:9518–9529

    Article  CAS  Google Scholar 

  • Mi Y-H, Norb D, Tao J, Mi Y-L, Ferm M (2006) Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Indoor Air 16:454–464

    Article  CAS  Google Scholar 

  • Nguyen HT, Kim K-H (2006) Evaluation of SO2 pollution levels between four different types of air quality monitoring stations. Atmos Environ 40:7066–7081

    Article  CAS  Google Scholar 

  • Ohura T, Amagai T, Sugiyama T, Fusaya M, Matsushita H (2004) Characteristics of particle matter and associated polycyclic aromatic hydrocarbons in indoor and outdoor air in two cities in Shizuoka. Jpn Atmos Environ 38:2045–2054

    Article  CAS  Google Scholar 

  • Orecchio S (2011) Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos Environ 45:1888–1895

    Article  CAS  Google Scholar 

  • Pankow JF, Luo WL et al (2003) Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos Environ 37:5023–5046

    Article  CAS  Google Scholar 

  • Pegas PN, Alves CA, Evtyugina MG, Nunes T, Cerqueira M, Franchi M, Pio CA, Almeida SM, Freitas MC (2011) Indoor air quality in elementary schools of Lisbon in spring. Environ Geochem Health 33:455–468

    Article  CAS  Google Scholar 

  • Pietrogrande MC, Abbaszade G, Schenelle-Kreis J, Bacco D, Mercurialli M, Zimmermann R (2011) Seasonal variation and source estimation of organic compounds in urban aerosol of Aygsburg, Germany. Environ Pollut 159:1861–1868

    Article  CAS  Google Scholar 

  • Poupard O, Blondeau P, Iordache V, Allard F (2005) Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools. Atmos Environ 39:2071–2080

    Article  CAS  Google Scholar 

  • Rao PS, Ansari FM, Pipalatkar P, Kumar A, Nema P, Devotta S (2008) Measurement of particulate phase polycyclic aromatic hydrocarbon (PAHs) around a petroleum refinery. Environ Monit Assess 137:387–392

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Raysoni AU, Sarnat JA, Sarnat SE, Garcia JH, Holguin F, Luevano SF et al (2011) Binational school-based monitoring of traffic-related air pollutants in El Paso Texas (USA) and Ciudad Juarez, Chihuahua (Mexico). Environ Pollut 159:2476–2486

    Article  CAS  Google Scholar 

  • Rivas I, Viana M, Moreno T, Pandolfi M, Amato F, Reche C et al (2014) Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ Int 69C:200–212

    Article  CAS  Google Scholar 

  • Romagnoli P, Balducci C, Perilli M, Gherardi M, Gordiani A, Gariazzo C, Gatto MP, Cecinato A (2014) Indoor PAHs at schools, homes and offices in Rome, Italy. Atmos Environ 92:51–59

    Article  CAS  Google Scholar 

  • Ruckerl R, Schneider A, Breitner S, Cyrys J, Peters A (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23:555–592

    Article  CAS  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Gotti A, Liakos LI, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765

    Article  CAS  Google Scholar 

  • Slezakova K, Castro D, Pereira MC, Morais S, Delerue-Matos C, Alvim-Ferraz MC (2009) Influence of tobacco smoke on carcinogenic PAH composition in indoor PM10 and PM2.5. Atmos Environ 38:6376–6382

    Article  CAS  Google Scholar 

  • Sousa J, Domingues VF, Rosas MS, Ribeiro S-O, Alvim-Ferraz CM, Delerue-Matos CF (2011) Outdoor and indoor benzene evaluation by GC-FID and GC-MS/MS. J Environ Sci Health A 46:181–187

    Article  CAS  Google Scholar 

  • Sozzi R, Bolignano A, Barberini S, Di Giosa AD (2012) Rapporto sullo stato della qualità dell’aria nella regione Lazio 2011. Report ARPA Lazio/Aria_01 Report _2012_DTO. DAI_01: Available at http://www.arpalazio.net/main/aria/doc/pubblicazio0ni.php

  • Stracquadanio M, Apollo G, Trombini C (2007) A study of PM2.5 and PM2.5-associated polycyclic aromatic hydrocarbons at an urban site in the Po Valley (Bologna, Italy). Water Air Soil Pollut 179:227–237

    Article  CAS  Google Scholar 

  • Strandberg B, Sunesson A-L, Sundgren M, Levin J-O, Sallsten G, Barregard L (2006) Field evaluation of two diffusive samplers and two adsorbent media to determine 1,3-butadiene and benzene levels in air. Atmos Environ 40:7686–7695

    Article  CAS  Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van Grieken R (2007) Comparative overview of indoor air quality in Antwerp, Belgium. Environ Int 33:789–797

    Article  CAS  Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van Grieken R (2008) Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 18:454–463

    Article  CAS  Google Scholar 

  • Tham YWF, Takeda K, Sakugawa H (2008) Exploring the correlation of particulate PAHs, sulfur dioxide, nitrogen dioxide and ozone, a preliminary study. Water Air Soil Pollut 194:5–12

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Topp R, Cyrys J, Gebefügi I, Schnelle-Kreis J, Richter K, Wichmann H-E, Heinrich J (2004) Indoor and outdoor air concentrations of BTEX and NO2: correlation of repeated measurements. J Environ Monit 6:807–812

    Article  CAS  Google Scholar 

  • Triantafyllou AG, Zoras S, Evagelopoulos V, Garas S (2008) PM10, O3, CO concentrations and elemental analysis of airborne particles in a school building. Water Air Soil Pollut Focus 8:77–87

    Article  CAS  Google Scholar 

  • Valerio F, Stella A, Munizzi A (2000) Correlations between PAHs and CO, NO, NO2, O3 along an urban street. Polycycl Aromat Compd 20:235–244

    Article  CAS  Google Scholar 

  • Wallace L, Pellizzari E, Hartwell TD, Perritt RMS, Ziegenfus R (1987) Exposures to benzene and other volatile compounds from active and passive smoking. Environ Heal 42:272–279

    CAS  Google Scholar 

  • WHO (1998) Environmental Health Criteria 202: Selected non-heterocyclic polycyclic aromatic hydrocarbons. World Health Organization, Geneva

    Google Scholar 

  • WHO (2000) WHO Regional Publications, Eur. Series No. 91. World Health Organization, Regional Office for Europe, Copenhagen

    Google Scholar 

  • Wichmann J, Lind T, Nilsson MA-M, Bellander T (2010) PM2.5 soot and NO2 indoor-outdoor relationship at homes, pre-schools and schools in Stockholm, Sweden. Atmos Environ 44:4536–4544

    Article  CAS  Google Scholar 

  • Zhang K, Zhang B-Z, Li S-M, Wong C-S, Zeng E-Y (2012) Calculated respiratory exposure to indoor size-fractioned polycyclic aromatic hydrocarbons in an urban environment. Sci Total Environ 431:245–251

    Article  CAS  Google Scholar 

  • Zhou B, Zhao B (2012) Population inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk in Beijing region: contributions of indoor and outdoor sources and exposures. Atmos Environ 62:472–480

    Article  CAS  Google Scholar 

  • Zwozdzihk A, Sowka I, Krupinska B, Zwozdzihk J, Nych A (2013) Infiltration or indoor source as determinants of the elemental composition of particulate matter inside a school in Wroclaw, Poland. Build Environ 66:173–180

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Giuliano Fontinovo (National Research Council of Italy, Institute of Atmospheric Pollution Research, CNR-IIA), for processing the map.

Special acknowledgement is for Mr. Fabrizio Sacco (ARPA Lazio, Rome, Italy) who provided excellent technical assistance in PAH sampling operations for Network ARPA Lazio.

We are indebted with G. Massaia Institute for hospitality and technical support; in particular, we want to thank Dr. Andrea Caroni and Prof. Loreta De Vincentis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Romagnoli.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Overview of the total and individual BTEX concentrations (μg/m3) at the indoor and outdoor monitoring sites. Site symbols: see Table 1. (DOCX 14 kb)

Table S2

Overview of O3, NO x , NO2, SO2 concentrations (μg/m3) at the indoor and outdoor monitoring sites. Site symbols: see Table 1. (DOCX 13 kb)

Table S3

a) Components in PCA analysis. b) Loadings given to the different variables in PCA analysis. c) Components scores of the different sites in PCA analysis. (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romagnoli, P., Balducci, C., Perilli, M. et al. Indoor air quality at life and work environments in Rome, Italy. Environ Sci Pollut Res 23, 3503–3516 (2016). https://doi.org/10.1007/s11356-015-5558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5558-4

Keywords

Navigation