Skip to main content
Log in

Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to assess the mechanisms of innate immune function responses to silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP) exposure alone and its associated mercury (Hg) in European eel (Anguilla anguilla L.) phagocytes isolated from peritoneum (P-phagocytes), gill (G-phagocytes), head kidney (HK-phagocytes) and spleen (S-phagocytes). The study evaluated viability, phagocytosis, oxidative burst activity (OBA) and lipid peroxidation (LPO). Four groups were made: (1) 2 × 106 phagocytes + RPMI-1640 (control), (2) 2 × 106 phagocytes + IONP (2.5 mg L−1), (3) 2 × 106 phagocytes + Hg (50 μg L−1) and (4) 2 × 106 phagocytes + IONP + Hg. Samplings were performed at 0, 2, 4, 8, 16, 24, 48 and 72 h of exposure. A. anguilla P-, G-, HK- and S-phagocytes in vitro exposure to IONP alone revealed either increased (except HK-phagocytes at 16 h) or no change in viability, suggesting that the cells are metabolically active and resistant to IONP exposure alone. In terms of phagocytes overactivation and reactive oxygen species (ROS) production as an indirect mechanism of immunotoxicity, the phagocytes responded in the following manner: P- > S- > HK- = G-phagocytes for IONP exposure alone, S- > HK- > P- = G-phagocytes for Hg exposure alone and HK- > G- = S- > P-phagocytes for concomitant exposure. Overall, considering Hg as a surrogate for metals and its association with IONP, as well as the likelihood that it could pose a serious threat to aquatic organisms by modulating their immune defense mechanisms if accidentally discharged into the aquatic environment, current results suggest that the step of IONP–metal complex removal must not be underrated and should be processed without any more ado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad I, Fatima M, Athar M, Khan NZ, Raisuddin S (1998) Responses of circulating fish phagocytes to paper mill effluent exposure. Bull Environ Contam Toxicol 61:746–753

    Article  CAS  Google Scholar 

  • Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta (BBA) 1523:37–48

    Article  CAS  Google Scholar 

  • Ahmad I, Pacheco M, Santos MA (2003) Naphthalene-induced differential tissue damage association with circulating fish phagocyte induction. Ecotoxicol Environ Saf 54:7–15

    Article  CAS  Google Scholar 

  • Ahmad I, Pacheco M, Santos MA (2004) Enzymatic and nonenzymatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicol Environ Saf 57:290–302

    Article  CAS  Google Scholar 

  • Ahmad I, Coelho JP, Mohmood I, Pacheco M, Santos MA, Duarte AC, Pereira E (2011a) Immunosuppression in the infaunal bivalve Scrobicularia plana environmentally exposed to mercury and association with its accumulation. Chemosphere 82:1541–1546

    Article  CAS  Google Scholar 

  • Ahmad I, Mohmood I, Mieiro CL, Coelho JP, Pacheco M, Santos MA, Duarte AC, Pereira E (2011b) Lipid peroxidation versus antioxidant modulation in the bivalve Scrobicularia plana in response to environmental mercury—organ specificities and age effect. Aquat Toxicol 103:150–158

    Article  CAS  Google Scholar 

  • Ahmad I, Coelho J, Mohmood I, Anjum NA, Pacheco M, Santos MA, Duarte AC, Pereira E (2012) Mercury contaminated systems under recovery can represent an increased risk to seafood human consumers—a paradox depicted in bivalves’ body burdens. Food Chem 133:665–670

    Article  CAS  Google Scholar 

  • Ambashta RD, Sillanpaa M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  • Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M, Moeller M, Zwadlo-Klarwasser G, Groll J (2010) Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4:3073–3086

    Article  CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Aitchison G, Curtis AS (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bulte JM, Kraitchman DL (2004a) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5:567–584

    Article  CAS  Google Scholar 

  • Bulte JW, Kraitchman DL (2004b) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  CAS  Google Scholar 

  • Fatima M, Ahmad I, Sayeed I, Athar M, Raisuddin S (2000) Pollutant-induced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquat Toxicol 49:243–250

    Article  CAS  Google Scholar 

  • Feng X, Deng T, Zhang Y, Su S, Wei C, Han D (2011) Lipopolysaccharide inhibits macrophage phagocytosis of apoptotic neutrophils by regulating the production of tumour necrosis factor alpha and growth arrest-specific gene 6. Immunology 132:287–295

    Article  CAS  Google Scholar 

  • Fournier M, Pellerin J, Clermont Y, Morin Y, Brousseau P (2001) Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes. Toxicology 161:201–211

    Article  CAS  Google Scholar 

  • Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    Article  CAS  Google Scholar 

  • Fujiki K, Yano T (1997) Effects of sodium alginate on the non-specific defence system of the common carp (Cyprinus carpio L.). Fish Shellfish Immunol 7:417–427

    Article  Google Scholar 

  • Geeraerts C, Belpaire C (2010) The effects of contaminants in European eel: a review. Ecotoxicology 19:239–266

    Article  CAS  Google Scholar 

  • Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240

    Article  CAS  Google Scholar 

  • Gordon S (1998) The role of the macrophage in immune regulation. Immunol Res 149:685–688

    Article  CAS  Google Scholar 

  • Handy R, Henry T, Scown T, Johnston B, Tyler C (2008a) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17:396–409

    Article  CAS  Google Scholar 

  • Handy R, Owen R, Valsami-Jones E (2008b) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • Handy R, von der Kammer F, Lead J, Hassellöv M, Owen R, Crane M (2008c) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Isani G, Falcioni ML, Barucca G, Sekar D, Andreani G, Carpenè E, Falcioni G (2013) Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf 97:40–46

    Article  CAS  Google Scholar 

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2007) Biodistribution, clearance and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327

    Article  Google Scholar 

  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish—review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118–119:141–151

    Article  Google Scholar 

  • Jovanovic B, Whitley EM, Palic D (2014) Histopathology of fathead minnow (Pimephales promelas) exposed to hydroxylated fullerenes. Nanotoxicology 8:755–763

    CAS  Google Scholar 

  • Karlsson HL, Holgersson A, Moller L (2008) Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem Res Toxicol 21:726–731

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  • Kim BC, Lee J, Um W, Kim J, Joo J, Lee JH, Kwak JH, Kim JH, Lee C, Lee H, Addleman RS, Hyeon T, Gu MB, Kim J (2011) Magnetic mesoporous materials for removal of environmental wastes. J Hazard Mater 192:1140–1147

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Krpetic Z, Porta F, Caneva E, Dal Santo V, Scari G (2010) Phagocytosis of biocompatible gold nanoparticles. Langmuir 26:14799–14805

    Article  CAS  Google Scholar 

  • Lima R, Espirito AP, Porto R, Fraceto L (2011) Evaluation of cyto- and genotoxicity of poly(lactide-co-glycolide) nanoparticles. J Polym Environ 19:196–202

    Article  CAS  Google Scholar 

  • Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    Article  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2009) An in vitro study of bare and poly(ethylene glycol)-co-fumarate coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20:225104–22512

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B: Biointerfaces 75:300–309

    Article  CAS  Google Scholar 

  • Manibusan MK, Odin M, Eastmond DA (2007) Postulated carbon tetrachloride mode of action: a review. J Environ Sci Health Part C 25:185–209

    Article  CAS  Google Scholar 

  • Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40

    Article  CAS  Google Scholar 

  • Moeller S, Kegler R, Sternberg K, Mundkowski RG (2012) Influence of sirolimus-loaded nanoparticles on physiological functions of native human polymorphonuclear neutrophils. Nanomed: Nanotechnol, Biol Med 8:1293–1300

    Article  CAS  Google Scholar 

  • Mohmood I, Ahmad I, Asim M, Costa L, Lopes CB, Trindade T, Duarte AC, Pereira E (2015) Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposures—a paradox depicted in fish under in vitro conditions. Environ Sci Pollut Res 22:3687–3696

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mukherjee SP, Lyng FM, Garcia A, Davoren M, Byrne HJ (2010) Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol Appl Pharmacol 248:259–268

    Article  CAS  Google Scholar 

  • Parra D, Rieger A, Li J, Zhang YA, Randall LM, Hunter CA, Barreda DR, Sunyer JO (2012) Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol 91:525–536

    Article  CAS  Google Scholar 

  • Paul N, Sengupta M (2013) Lead induced overactivation of phagocytes and variation in enzymatic and non-enzymatic antioxidant defenses in intestinal macrophages of Channa punctatus. Modern Res Inflamm 2:28–35

    Article  Google Scholar 

  • Perreault F, Melegari SP, Costa CH, Oliveira AL, Popovic R, Matias WG (2012) Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ 441:117–124

    Article  CAS  Google Scholar 

  • Planque MR, Aghdaei S, Roose T, Morgan H (2011) Electrophysiological characterization of membrane disruption by nanoparticles. ACS Nano 5:3599–3606

    Article  Google Scholar 

  • Raisuddin S, Singh KP, Zaidi SI, Paul BN, Ray PK (1993) Immunosuppressive effects of aflatoxin in growing rats. Mycopathologia 124:189–194

    Article  CAS  Google Scholar 

  • Roesslein M, Hirsch C, Kaiser JP, Krug HF, Wick P (2013) Comparability of in vitro tests for bioactive nanoparticles: a common assay to detect reactive oxygen species as an example. Int J Mol Sci 14:24320–24337

    Article  Google Scholar 

  • Rousselet E, Levin M, Gebhard E, Higgins BM, DeGuise S, Godard-Codding CJ (2013) Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta). Vet Immunol Immunopathol 156:43–53

    Article  CAS  Google Scholar 

  • Santos MA, Pacheco M (1996) Anguilla anguilla L. stress biomarkers recovery in clean water and secondary-treated pulp mill effluent. Ecotoxicol Environ Saf 35:96–100

    Article  CAS  Google Scholar 

  • Santos MA, Pacheco M, Ahmad I (2004) Anguilla anguilla L. antioxidants responses to in situ bleached kraft pulp mill effluent outlet exposure. Environ Int 30:301–308

    Article  CAS  Google Scholar 

  • Santos MA, Pacheco M, Ahmad I (2006) Responses of European eel (Anguilla anguilla L.) circulating phagocytes to an in situ closed pulp mill effluent exposure and its association with organ-specific peroxidative damage. Chemosphere 63:794–801

    Article  CAS  Google Scholar 

  • Sauvé S, Brousseau P, Pellerin J, Morin Y, Senecal L, Goudreau P, Fournier M (2002) Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquat Toxicol 58:189–200

    Article  Google Scholar 

  • Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed: Nanotechnol, Biol Med 6:662–671

    Article  CAS  Google Scholar 

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097

    Article  CAS  Google Scholar 

  • Singh N, Gareth JS, Asadi R, Doak S (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 1. 10.3402/nano.v1i0.5358

  • Tavares DS, Daniel-da-Silva AL, Lopes CB, Silva NJ, Amaral VS, Rocha J, Pereira E, Trindade T (2013) Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. J Mater Chem A 1:8134–8143

    Article  CAS  Google Scholar 

  • Tavares DS, Lopes CB, Daniel-da-Silva AL, Duarte AC, Trindade T, Pereira E (2014) The role of operational parameters on the uptake of mercury by dithiocarbamate functionalized particles. Chem Eng J 254:559–570

    Article  CAS  Google Scholar 

  • Tellez-Bañuelos MC, Santerre A, Casas-Solis J, Bravo-Cuellar A, Zaitseva G (2009) Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan. Fish Shellfish Immunol 27:105–111

    Article  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Wang C, Yu X, Cao Q, Wang Y, Zheng G, Tan TK, Zhao H, Zhao Y, Wang Y, Harris D (2013) Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol 14:1–10

    Article  Google Scholar 

  • Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7:1–6

    Google Scholar 

Download references

Acknowledgments

Leonor Costa, Iram Mohmood (SFRH/BD/74410/2010), Iqbal Ahmad, Armando Duarte and Eduarda Pereira are grateful to European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) (PEst-C/MAR/LA0017/2013, PTDC/MAR-BIO/3533/2012) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) for partial financial supports.

Conflict of interest

The athors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, L.C., Mohmood, I., Trindade, T. et al. Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.). Environ Sci Pollut Res 22, 18574–18589 (2015). https://doi.org/10.1007/s11356-015-5375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5375-9

Keywords

Navigation