Skip to main content
Log in

Is gene transcription in mussel gills altered after exposure to Ag nanoparticles?

  • Molecular and cellular effects of contamination in aquatic ecosystems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanotechnology is a rapid field of development with the enhancement of the production of different types of nanoparticles (NPs) applied in several industrial and commercial applications which increase the risk of their presence in the aquatic environment. Ag NPs have a wide application in everyday life products. However, there is concern about the exposure effects on aquatic organisms to these NPs. Therefore, this study aims to assess gene transcription alterations in mussels Mytilus galloprovincialis gills exposed for 2 weeks to Ag NPs (42 ± 10 nm, 10 μg.L−1). The genes were selected based on previous biomarkers and proteomic results and included superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), caspase 3/7-1 (CAS), cathepsin L (CATH), heat-shock protein 70 (HSP 70), cytochrome P450 4YA (CYP 4YA), the elongation factor (EF1), actin and α- tubulin. No significant changes in gene transcription profiles were observed after exposure of M. galloprovincialis to Ag NPs for 15 days. The lack of significant gene transcription responses is in light with previous results obtained for mussels exposed to these NPs and may be related to the fact that enzyme kinetics and relative abundance of proteins (increase of antioxidant enzymes and metalllothioneins (MTs) with the time of exposure) do not always directly reflect their relative mRNA levels. Nevertheless, their overall expression maintenance may signify that, at end of the exposure period (15 days), the transcription of the respective genes is no longer required, pointing out to a possible adaptation effect to nanoparticles or due to the levels of Ag NPs accumulated in this tissue at this exposure time. This study highlights that gene transcription application and role as an additional and/or alternative end point approach is important to understand the mode of action of these emergent contaminants in aquatic organisms. However, in future studies, the time window needs to be adjusted, as genes are likely to respond earlier to the nanoparticle exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910. doi:10.1002/smll.200801716

    Article  CAS  Google Scholar 

  • Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387. doi:10.1016/j.aquatox.2007.11.019

    Article  CAS  Google Scholar 

  • Bebianno MJ, Geret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, Roméo M (2004) Biomarkers in Ruditapes decussatus: a potential biondicator species. Biomarkers 9:305–330. doi:10.1080/13547500400017820

    Article  CAS  Google Scholar 

  • Buffet P-E, Tankoua OF, Pan J-F, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard J-C, Bérard J-B, Risso C, Guibbolini M, Roméo M, Reip P, Valsami-Jones E, Mouneyrac C (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84:166–174. doi:10.1016/j.chemosphere.2011.02.003

    Article  CAS  Google Scholar 

  • Buffet P-E, Pan J-P, Poirier L, Amiard-Triquet C, Amiard JC, Gaudin P, Risso-de Faverney C, Guibbolini M, Gilliland D, Valsami-Jones E, Mouneyrac C (2013) Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol Environ Saf 89:117–124. doi:10.1016/j.ecoenv.2012.11.019

    Article  CAS  Google Scholar 

  • Cajaraville MP, Bebianno MJ, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311. doi:10.1016/S0048-9697(99)00499-4

    Article  CAS  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21. doi:10.1016/j.marenvres.2011.06.005

    Article  CAS  Google Scholar 

  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu D–Y (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159. doi:10.1016/j.aquatox.2009.12.012

    Article  CAS  Google Scholar 

  • Cruz-Rodríguez LA, Chu F-LE (2002) Heat-shock protein (HSP70) response in the eastern oyster, Crassostrea virginica, exposed to PAHs sorbed to suspended artificial clay particles and to suspended field contaminated sediments. Aquat Toxicol 60:157–168. doi:10.1016/S0166-445X(02)00008-5

    Article  Google Scholar 

  • Fabbri E, Valbonesi P, Franzellitti S (2008) HSP expression in bivalves. Invertebr Surviv J 5:135–161, http://www.isj.unimo.it/articoli/ISJ170.pdf

    Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TM, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  CAS  Google Scholar 

  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362. doi:10.1021/es200955s

    Article  CAS  Google Scholar 

  • Gomes T, Pereira CG, Cardoso C, Pinheiro JP, Cancio I, Bebianno MJ (2012) Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat Toxicol 118–119:72–79. doi:10.1016/j.aquatox.2012.03.017

    Article  Google Scholar 

  • Gomes T, Araújo O, Pereira R, Almeida AC, Cravo A, Bebianno MJ (2013a) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res 84:51–59. doi:10.1016/j.aquatox.2013.03.021

    Article  CAS  Google Scholar 

  • Gomes T, Pereira CG, Cardoso C, Bebianno MJ (2013b) Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. Aquat Toxicol 136–137:79–90. doi:10.1016/j.aquatox.2013.03.021

    Article  Google Scholar 

  • Gomes T, Chora S, Pereira CG, Cardoso C, Bebianno MJ (2014a) Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: an exploratory biomarker discovery. Aquat Toxicol 155:327–336. doi:10.1016/j.aquatox.2014.07.015

    Article  CAS  Google Scholar 

  • Gomes T, Pereira CG, Cardoso C, Sousa VS, Teixeira MR, Pinheiro JP, Bebianno MJ (2014b) Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. Mar Environ Res 101:208–214. doi:10.1016/j.marenvres.2014.07.004

    Article  CAS  Google Scholar 

  • Gonzalez-Rey M, Mattos J, Piazza C, Bainy ACD, Bebianno MJ (2014) Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis. Aquat Toxicol 153:12–26. doi:10.1016/j.aquatox.2014.02.006

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415. doi:10.1093/toxsci/kfn256

    Article  CAS  Google Scholar 

  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horn N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31. doi:10.1002/etc.706

    Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi:10.1186/gb-2007-8-2-r19

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284. doi:10.1038/sj.gene.6364190

    Article  CAS  Google Scholar 

  • Lapresta-Fernández A, Fernández A, Blasco J (2012) Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal Chem 32:40–59. doi:10.1016/j.trac.2011.09.007

    Article  Google Scholar 

  • Lee JS, Kim YJ, Kim CL, Lee GM (2012) Differential induction of autophagy in caspase-3/7 down-regulating and Bcl-2 overexpressing recombinant CHO cells subjected to sodium butyrate treatment. J Biotechnol 161:34–41. doi:10.1016/j.jbiotec.2012.05.011

    Article  CAS  Google Scholar 

  • Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges. Project on Emerging Nanotechnologies. Publication 15. Woodrow Wilson International Center for Scholars and PEW Charitable Trusts, Washington, DC

  • McCarthy MP, Carroll DL, Ringwood AH (2013) Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquat Toxicol 138–139:123–128. doi:10.1016/j.aquatox.2013.04.015

    Article  Google Scholar 

  • Niu D, Jin K, Wang L, Feng B, Li J (2013) Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta. Fish Shellfish Immunol 35:581–588. doi:10.1016/j.fsi.2013.06.001

    Article  CAS  Google Scholar 

  • Park H-G, Yeo M-K (2013) Comparison of gene expression changes induced by exposure to Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos. Mol Cell Toxicol 9:129–139. doi:10.1007/s13273-013-0017-0

    Article  CAS  Google Scholar 

  • Peyrot C, Gagnon C, Gagné F, Willkinson KJ, Turcotte P, Sauvé S (2009) Effects of cadmium telluride quantum dots on cadmium bioaccumulation and metallothionein production to the freshwater mussel, Elliptio complanata. Comp Biochem Physiol C 150:246–251. doi:10.1016/j.cbpc.2009.05.002

    Google Scholar 

  • Qiagen (2009a) QIAzol handbook: for efficient lysis of fatty tissues and all other types of tissue before RNA purification

  • Qiagen (2009b) QuantiTect® reverse transcription handbook, p 31

  • Qiagen (2011) QuantiFast® SYBR® Green PCR KIT. Quick Start Protocol 3

  • Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423. doi:10.1016/S0141-1136(02)00146-0

    Article  CAS  Google Scholar 

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126, http://link.springer.com/article/10.1007%2FBF03216589#page-1

    Article  CAS  Google Scholar 

  • Ringwood AH, McCarthy M, Bates TC, Carroll DL (2009) The effects of silver nanoparticles on oyster embryos. Mar Environ Res 69:549–551. doi:10.1016/j.marenvres.2009.10.011

    Google Scholar 

  • Romero A, Estévez–Calvar N, Dios S, Figueras A, Novoa B (2011) New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis. PLoS ONE 6:e17003. doi:10.1371/journal.pone.0017003

  • Scharf K-D, Hohfeld I, Nover L (1998) Heat stress response and heat stress transcription factors. J Biosci 23:313–329

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Snyder MJ (2000) Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. Aquat Toxicol 48:529–547. doi:10.1016/S0166-445X(00)00085-0

    Article  CAS  Google Scholar 

  • Tsyusko OV, Hardas SS, Shoults-Wilson WA, Starnes CP, Joice G, Butterfield DA, Unrine JM (2012) Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ Pollut 171:249–255. doi:10.1016/j.envpol.2012.08.003

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Review article fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. doi:10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Viarengo A, Canesi L, Garcia Martinez P, Peters LD, Livingstone DR (1995) Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus). Comp Biochem Physiol B 111:119–126. doi:10.1016/0305-0491(94)00228-M

    Article  Google Scholar 

  • Vioque-Fernandez A, de Almeida EA, Lopez–Barea J (2009) Assessment of Doñana National Park contamination in Procambarus clarkii: integration of conventional biomarkers and proteomic approaches. Sci Total Environ 407:1784–1797. doi:10.1016/j.scitotenv.2008.11.051

    Article  CAS  Google Scholar 

  • Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161

    Article  CAS  Google Scholar 

  • Winston GW, Moore MN, Kirchin MA, Soverchia C (1996) Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp Biochem Physiol C 113:221–229

    Article  CAS  Google Scholar 

  • Xiang Z, Qu F, Qi L, Zhang Y, Tong Y, Yu Z (2013) Cloning, characterization and expression analysis of a caspase-8 like gene from the Hong Kong oyster, Crassostrea hongkongensis. Fish Shellfish Immunol 35:1797–1803. doi:10.1016/j.fsi.2013.08.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the EU project GENERA within the framework of the Marie Curie IRSES Actions (FP7-PEOPLE-2009-IRSES-Proposal no 247559) and by the Portuguese Foundation of Science and Technology (FCT) project NANOECOTOX (PTDC/AAC-AMB/121650/2010). T. Gomes was supported by a Portuguese Foundation of Science and Technology PhD Grant (SFRH/BD/41605/2007). FFN was a fellow doctoral PDEE (CAPES-Process 1452-10-0). MJB is a recipient of a PVE-CNPq fellowship and ACDB is a recipient of a CNPQ productivity fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bebianno.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebianno, M.J., Gonzalez-Rey, M., Gomes, T. et al. Is gene transcription in mussel gills altered after exposure to Ag nanoparticles?. Environ Sci Pollut Res 22, 17425–17433 (2015). https://doi.org/10.1007/s11356-015-5186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5186-z

Keywords

Navigation