Skip to main content

Advertisement

Log in

Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment

  • Persistent Organic Pollutants (POPs): a global issue, a global challenge
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnot JA, Mackay D (2008) Policies for chemical hazard and risk priority setting: can persistence, bioaccumulation, toxicity, and quantity information be combined? Environ Sci Tech 42(13):4648–4654. doi:10.1021/es800106g

    Article  CAS  Google Scholar 

  • Arnot JA, Meylan W, Tunkel J, Howard PH, Mackay D, Bonnell M, Boethling RS (2009) A quantitative structure-activity relationship for predicting metabolic biotransformation rates for organic chemicals in fish. Environ Toxicol Chem 28(6):1168–77. doi:10.1897/08-289.1

    Article  CAS  Google Scholar 

  • Batterman S, Chernyak S, Gouden Y, Hayes J, Robins T, Chetty S (2009) PCBs in air, soil and milk in industrialized and urban areas of KwaZulu-Natal, South Africa. Environ Pollut 157(2):654–63. doi:10.1016/j.envpol.2008.08.015

    Article  CAS  Google Scholar 

  • Birak P, Yurk J, Adeshina F, Lorber M, Pollard K, Choudhury H, Kroner S (2001) Travis and arms revisited: a second look at a widely used bioconcentration algorithm. Toxicol Ind Health 17(5):163–175. doi:10.1191/0748233701th110oa

    Article  CAS  Google Scholar 

  • Boethling RS, Howard PH, Meylan W, Stiteler W, Beauman J, Tirado N (1994) Group contribution method for predicting probability and rate of aerobic biodegradation. Environ Sci Tech 28(3):459–65. doi:10.1021/es00052a018

    Article  CAS  Google Scholar 

  • Brand E, Otte PF, Lijzen JPA (2007) CSOIL 2000: an exposure model for human risk assessment of soil contamination. RIVM report 711701054/2007. RIVM, Bilthoven

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13(5):495–504. doi:10.1002/ps.2780130506

    Article  CAS  Google Scholar 

  • Brown TN, Arnot JA, Wania F (2012) Iterative fragment selection: a group contribution approach to predicting fish biotransformation half-lives. Environ Sci Tech 46(15):8253–60. doi:10.1021/es301182a

    Article  CAS  Google Scholar 

  • Chen J, Quan X, Yazhi Z, Yan Y, Yang F (2001) Quantitative structure–property relationship studies on n-octanol/water partitioning coefficients of PCDD/Fs. Chemosphere 44(6):1369–74. doi:10.1016/S0045-6535(00)00347-7

    Article  CAS  Google Scholar 

  • Collins CD, Finnegan E (2010) Modeling the plant uptake of organic chemicals, including the soil-air-plant pathway. Environ Sci Tech 44(3):998–1003. doi:10.1021/es901941z

    Article  CAS  Google Scholar 

  • Collins C, Martin I, Fryer M (2006) Evaluation of models for predicting plant uptake of chemicals from soil. Environment Agency, Bristol

    Google Scholar 

  • Decisioneering, I (2006) Crystal Ball® 7.2.2 user manual. Denver, Colorado

  • Duarte-Davidson RE, Jones KC (1996) Screening the environmental fate of organic contaminants in sewage sludges applied to agricultural soils: II: the potential for transfers to plants and grazing animals. Sci Total Environ 185(1–3):59–70. doi:10.1016/0048-9697(96)05042-5

    Article  CAS  Google Scholar 

  • ECHA (2011) Guidance on information requirements and chemical safety assessment. Part A: introduction to the guidance document. European Chemicals Agency, Helsinki

    Google Scholar 

  • Elert M (2008) Modelling to derive guideline concentrations for organic contaminants in soils Swedish experience. www.reading.ac.uk/web/FILES/shes/Elert.ppt. Accessed 28 Feb 2015

  • European Commission (2003) Technical guidance document on risk assessment. Ispra, Italy

  • Hendriks AJ, Smítková H, Huijbregts MAJ (2007) A new twist on an old regression: transfer of chemicals to beef and milk in human and ecological risk assessment. Chemosphere 70(1):46–56. doi:10.1016/j.chemosphere.2007.07.030

    Article  CAS  Google Scholar 

  • Hsu FC, Marxmiller RL, Yang AY (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol 93(4):1573–8. doi:10.2307/4273023

    Article  CAS  Google Scholar 

  • Jeffries J, Martin I (2009) Updated technical background to the CLEA model. Science Report: SC050021/SR3. Environmental Agency, Bristol

  • Jury WA, Spencer WF, Farmer WJ (1983) Behavior assessment model for trace organics in soil: I. Model description 1. J Environ Qual 12(4):558. doi:10.2134/jeq1983.00472425001200040025x

    Article  CAS  Google Scholar 

  • Lassek E, Jahr D, Mayer R (1993) Polychlorinated dibenzo-p-dioxins and dibenzofurans in cows milk from Bavaria, FRG. Chemosphere 27(4):519–534

    Article  CAS  Google Scholar 

  • Legind CN, Trapp S (2009) Modeling the exposure of children and adults via diet to chemicals in the environment with crop-specific models. Environ Pollut 157(3):778–785. doi:10.1016/j.envpol.2008.11.021

    Article  CAS  Google Scholar 

  • Lijzen JPA, Rikken MGJ (2004) European Union System for the Evaluation of Substances (EUSES), Ver. 2.0. Background report. RIVM Report no. 601900005. RIVM Bilthoven

  • Mamontova EA, Tarasova EN, Mamontov AA, Kuzmin MI, McLachlan MS, Khomutova MI (2007) The influence of soil contamination on the concentrations of PCBs in milk in Siberia. Chemosphere 67(9):S71–8. doi:10.1016/j.chemosphere.2006.05.092

    Article  CAS  Google Scholar 

  • Mckone TE (1993) CalTOX, A multimedia total-exposure model for hazardous-wastes sites part I: executive summary. UCRL-CR--111456-Pt. Lawrence Livermore National Laboratory, Livermore, CA

  • McKone TE, Ryan PB (1989) Human exposures to chemicals through food chains: an uncertainty analysis. Environ Sci Tech 23(9):1154–1163. doi:10.1021/es00067a014

    Article  CAS  Google Scholar 

  • McLachlan MS (1992) PhD dissertation. University of Bayreuth

  • McLachlan MS (1993) Mass balance of polychlorinated biphenyls and other organochlorine compounds in a lactating cow. J Agric Food Chem 41(3):474–480. doi:10.1021/jf00027a024

    Article  CAS  Google Scholar 

  • McLachlan MS (1996) Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ Sci Tech 30(1):252–259. doi:10.1021/es9502738

    Article  CAS  Google Scholar 

  • McLachlan MS (1999) Framework for the interpretation of measurements of SOCs in plants. Environ Sci Tech 33(11):1799–1804. doi:10.1021/es980831t

    Article  CAS  Google Scholar 

  • McLachlan MS, Hinkel M, Reissinger M, Kaupp H, Hippelein M, Hutzinger O (1992) Klarschlammdungung-Eintrag von PCDD, PCDF und PCB in die Nahrungskette. Materialien 82. Bavarian Ministry for Development and the Environment. Munich

  • McLachlan MS, Hinkel M, Reissinger M, Hippelein M, Kaupp H (1994) A study of the influence of sewage sludge fertilization on the concentrations of PCDD/F and PCB in soil and milk. Environ Pollut 85:337–343. doi:10.1016/0269-7491(94)90056-6

    Article  CAS  Google Scholar 

  • MeteoSwiss (2014) Normals 1981–2010: air temperature 2m. Zurich

  • Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J Clim 16:1032–46. doi:10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2

    Article  Google Scholar 

  • Rosenbaum RK, McKone TE, Jolliet O (2009) CKow: a dynamic model for chemical transfer to meat and milk. Environ Sci Tech 43(21):8191–8. doi:10.1021/es803644z

    Article  CAS  Google Scholar 

  • Ryan JA, Bell RM, Davidson JM, O’Connor GA (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17(12):2299–2323. doi:10.1016/0045-6535(88)90142-7

    Article  CAS  Google Scholar 

  • Schenker U, MacLeod M, Scheringer M, Hungerbühler K (2005) Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Tech 39(21):8434–41. doi:10.1021/es0502526

    Article  CAS  Google Scholar 

  • Shunthirasingham C, Wania F, MacLeod M, Lei YD, Quinn CL, Zhang X, Alaee M (2013) Mountain cold-trapping increases transfer of persistent organic pollutants from atmosphere to cows’ milk. Environ Sci Tech 47(16):9175–81. doi:10.1021/es400851d

    Article  CAS  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749. doi:10.1016/S0045-6535(97)00195-1

    Article  CAS  Google Scholar 

  • Takaki K, Wade AJ, Collins CD (2014) Assessment of plant uptake models used in exposure assessment tools for soils contaminated with organic pollutants. Environ Sci Tech 48(20):12073–82. doi:10.1021/es501086x

    Article  CAS  Google Scholar 

  • Takaki K, Wade AJ, Collins CD (2015) Assessment and improvement of biotransfer models to cow’s milk and beef used in exposure assessment tools for organic pollutants. Chemosphere 138:390–397. doi:10.1016/j.chemosphere.2015.04.032

    Article  CAS  Google Scholar 

  • Trapp S (2002) Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem 21(1):203–206. doi:10.1002/etc.5620210128

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Tech 29(9):2333–8. doi:10.1021/es00009a027

    Article  CAS  Google Scholar 

  • Trapp S, Schwartz S (2000) Proposals to overcome limitations in the EU chemical risk assessment scheme. Chemosphere 41(7):965–971. doi:10.1016/S0045-6535(99)00532-9

    Article  CAS  Google Scholar 

  • Travis CC, Arms AD (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ Sci Tech 22(3):271–4. doi:10.1021/es00168a005

    Article  CAS  Google Scholar 

  • Undeman E, McLachlan MS (2011) Assessing model uncertainty of bioaccumulation models by combining chemical space visualization with a process-based diagnostic approach. Environ Sci Tech 45(19):8429–36. doi:10.1021/es2020346

    Article  CAS  Google Scholar 

  • Undeman E, Czub G, McLachlan MS (2009) Addressing temporal variability when modeling bioaccumulation in plants. Environ Sci Tech 43(10):3751–3756. doi:10.1021/es900265j

    Article  CAS  Google Scholar 

  • US EPA (2012) Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC

  • VKM (Norwegian Scientific Committee for Food Safety) (2009) Risk assessment of contaminants in sewage sludge applied on Norwegian soils. Nydalen, Oslo

  • Welsch-Pausch K, McLachlan MS, Umlauf G (1995) Determination of the principal pathway of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh rye grass). Environ Sci Tech 29:1090–1098. doi:10.1021/es00004a031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Koki Takaki was supported by the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Collins.

Additional information

Responsible editor: Hongwen Sun

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaki, K., Wade, A.J. & Collins, C.D. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment. Environ Sci Pollut Res 24, 4252–4260 (2017). https://doi.org/10.1007/s11356-015-5176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5176-1

Keywords

Navigation