Skip to main content
Log in

A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais

  • Crop protection and environmental health: legacy management and new concepts
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MG, Burt TP (1977) Automatic monitoring of soil-moisture conditions in a hillslope spur and hollow. J Hydrol 33:27–36. doi:10.1016/0022-1694(77)90096-8

    Article  Google Scholar 

  • Ankeny MD, Ahmed M, Kaspar TC, Horton R (1991) Simple field method for determining unsaturated hydraulic conductivity. Soil Sci Soc Am J 55:467–470

    Article  Google Scholar 

  • Bach M, Huber A, Frede HG (2001) Input pathways and river load of pesticides in Germany—a national scale modeling assessment. Water Sci Technol J Int Assoc Water Pollut Res 43:261–268

    CAS  Google Scholar 

  • Brown CD, van Beinum W (2009) Pesticide transport via sub-surface drains in Europe. Environ Pollut 157:3314–3324. doi:10.1016/j.envpol.2009.06.029

    Article  CAS  Google Scholar 

  • Brown CD, Hodgkinson RA, Rose DA, Syers JK, Wilcockson SJ (1995) Movement of pesticides to surface waters from a heavy clay soil. Pestic Sci 43:131–140. doi:10.1002/ps.2780430206

    Article  CAS  Google Scholar 

  • Dabrowski JM, Peall SKC, Reinecke AJ, Liess M, Schulz R (2002) Runoff-related pesticide input into the Lourens River, South Africa: basic data for exposure assessment and risk mitigation at the catchment scale. Water Air Soil Pollut 135:265–283. doi:10.1023/A:1014705931212

    Article  CAS  Google Scholar 

  • Hardie MA, Doyle RB, Cotching WE, Lisson S (2012) Subsurface lateral flow in texture-contrast (duplex) soils and catchments with shallow bedrock. Appl Environ Soil Sci 2012:10. doi:10.1155/2012/861358

    Article  Google Scholar 

  • Ineris (2012) SIRIS-Pesticides, base de données substances actives 2012. http://www.ineris.fr/siris-pesticides/bdd_siris_pesticides. Accessed 23 January 2015 (in French)

  • Johnson AC, Haria AH, Bhardwaj CL, Williams RJ, Walker A (1996) Preferential flow pathways and their capacity to transport isoproturon in a structured clay soil. Pestic Sci 48:225–237

    Article  CAS  Google Scholar 

  • Kahl G, Ingwersen J, Nutniyom P, Totrakool S, Pansombat K, Thavornyutikarn P, Streck T (2007) Micro-trench experiments on interflow and lateral pesticide transport in a sloped soil in northern Thailand. J Environ Qual 36:1205–1216. doi:10.2134/jeq2006.0241

    Article  CAS  Google Scholar 

  • Lehman OR, Ahuja LR (1985) Interflow of water and tracer chemical on sloping field plots with exposed seepage faces. J Hydrol 76:307–317. doi:10.1016/0022-1694(85)90139-8

    Article  Google Scholar 

  • Louchart X, Voltz M, Andrieux P, Moussa R (2001) Herbicide transport to surface waters at field and watershed scales in a Mediterranean vineyard area. J Environ Qual 30:982–991

    Article  CAS  Google Scholar 

  • Margoum C, Guillemain C, Biaudet H, Lepot B (2011) Stabilité des substances organiques dans les échantillons d’eau entre le prélèvement et la prise en charge analytique. Etat de l’art et exemples d’études. Cemagref, Ineris (in French)

  • McCord JT, Stephens DB (1987) Lateral moisture flow beneath a sandy hillslope without an apparent impeding layer. Hydrol Process 1:225–238. doi:10.1002/hyp.3360010302

    Article  Google Scholar 

  • Phillips JD (2004) Geogenesis, pedogenesis, and multiple causality in the formation of texture-contrast soils. Catena 58:275–295. doi:10.1016/j.catena.2004.04.002

    Article  Google Scholar 

  • Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environ Pollut 158:737–748. doi:10.1016/j.envpol.2009.10.014

    Article  CAS  Google Scholar 

  • Reynolds WD, Elrick DE (1991) Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci Soc Am J 55:633–639

    Article  Google Scholar 

  • Ritsema CJ, Oostindie K, Stolte J (1996) Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model. Hydrol Process 10:1091–1105. doi:10.1002/(sici)1099-1085(199608)10:8<1091::aid-hyp414>3.0.co;2-j

    Article  Google Scholar 

  • Schafer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285. doi:10.1016/j.scitotenv.2007.04.040

    Article  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448

    Article  CAS  Google Scholar 

  • Smith KA, Mullins CE (1991) Soil analysis: physical methods. Marcel Dekker, New York

    Google Scholar 

  • SOeS (Service français d’Observation et des Statistiques) (2011) Bilan de présence des micropolluants dans les milieux aquatiques continentaux, Période 2007–2009. In Études & documents du Commissariat général du développement durable, Service de l’observation et des statistiques : n° 54 Octobre 2011. ISBN : 978-2-11-099419-6. www.statistiques.developpement-durable.gouv.fr, 60 p. Accessed 23 Jan 2015 (in French)

  • Tang X, Zhu B, Katou H (2012) A review of rapid transport of pesticides from sloping farmland to surface waters: processes and mitigation strategies. J Environ Sci 24:351–361

    Article  CAS  Google Scholar 

  • Tlili A, Montuelle B, Berard A, Bouchez A (2011) Impact of chronic and acute pesticide exposures on periphyton communities. Sci Total Environ 409:2102–2113. doi:10.1016/j.scitotenv.2011.01.056

    Article  CAS  Google Scholar 

  • Truman CC, Leonard RA, Johnson AW (1998) Fenamiphos transport, transformation, and degradation in a highly weathered soil. Trans ASAE 41:663–671

    Article  CAS  Google Scholar 

  • Wallach R, Shabtai R (1992) Modeling surface runoff contamination by soil chemicals under transient water infiltration. J Hydrol 132:263–281. doi:10.1016/0022-1694(92)90182-U

  • Webster R (1966) The measurement of soil water tension in the field. New Phytol 65:249–258. doi:10.1111/j.1469-8137.1966.tb06357.x

    Article  Google Scholar 

  • Weyman DR (1973) Measurements of the downslope flow of water in a soil. J Hydrol 20:267–288

    Article  Google Scholar 

  • Whipkey RZ (1965) Subsurface stormflow from forested slopes. Int Assoc Sci Hydrol 10:74–85. doi:10.1080/02626666509493392

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Water Agency Rhône Méditerranée & Corse is acknowledged. The authors thank M. Letey and C. Dutremble for their contribution to the field work; P. Bouland, vinegrower, for allowing our research on his farmed plot; and the staff of the “diffuse agricultural pollution” team for their help during the digging of the trench.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Peyrard.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyrard, X., Liger, L., Guillemain, C. et al. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais. Environ Sci Pollut Res 23, 14–22 (2016). https://doi.org/10.1007/s11356-015-4917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4917-5

Keywords

Navigation