Skip to main content

Advertisement

Log in

Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response

  • Molecular and cellular effects of contamination in aquatic ecosystems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) are considered an important nano-sized component of the twenty-first century. Due to their unique physical and chemical properties, they are being used and developed for a wide range of promising applications in medicine, biology and chemistry. Notwithstanding their useful aspects, in recent years concern has been raised over their ability to enter cells, organelles and nuclei and provoke oxidative stress. In a laboratory-based experiment, the non-target marine bivalve Ruditapes philippinarum was used as a model organism. Uptake, elimination and molecular effects under short-term and sub-chronic exposure conditions to an environmental relevant concentration (0.75 μg L−1) of weakly agglomerating citrate AuNPs (∼20 nm) were studied. Our results demonstrate that at the tested concentration, the particles are readily taken up into the digestive gland > gills and can produce significant changes (p < 0.05) in oxidative stress and inflammatory response markers, as measured by phase II antioxidant enzymes and q-PCR gene expression analysis. However, the overall magnitude of responses was low, and oxidative damage was not provoked. Further, a significant elimination of Au from the digestive tract within a 7-day purification period was observed, with excretion being an important pathway. In conclusion, short-term and sub-chronic exposure to an environmental relevant concentration of citrate-stabilized AuNPs cannot be considered toxic to our model organism, while some further consideration should be given to chronic exposure effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res 12:2313–2333

    Article  CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Berthet B, Metayer C (1987) Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. J Exp Mar Biol Ecol 106:73–89

    Article  CAS  Google Scholar 

  • Anonymous (2003) Colorimetric assay for lipid peroxidation, Oxis Health Products, Oxis Health Products

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009a) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero JY (2009b) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Binias C, Gonzalez P, Provost M, Lambert C, de Montaudouin X (2014) Brown muscle disease: impact on Manila clam Venerupis (=Ruditapes) philippinarum biology. Fish Shellfish Immunol 36:510–518

    Article  CAS  Google Scholar 

  • Blasco J, Puppo J (1999) Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 122:253–263

    Article  CAS  Google Scholar 

  • Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted exposure to engineered nanoparticles, Central Science Laboratory Department of the Environment and Rural Affairs London UK. EcoChemistryTeamUniversity of York/Central Science Laboratory

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

    Article  CAS  Google Scholar 

  • Chambers PA, Allard M, Walker SL, Marsalek J, Lawrence J, Servos M, Busnarda J, Munger KS, Adare K, Jefferson C, Kent RA, Wong MP (1997) Impacts of municipal wastewater effluents on Canadian waters: a review. Water Qual Res J Can 32:659–713

    CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  • Cohen MB, Duvel DL (1988) Characterization of the inhibition of glutathione reductase and the recovery of enzyme activity in exponentially growing murine leukemia (L1210) cells treated with 1,3-bis(2-choroethyl)-1-nitrosourea. Biochem Pharmacol 37:3317–3320

    Article  CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  Google Scholar 

  • Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L (2012) Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine 8:46–53

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  Google Scholar 

  • Driscoll KE, Carter JM, Hassenbein DG, Howard B (1997) Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 105(Suppl 5):1159–1164

    Article  CAS  Google Scholar 

  • Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232:243–248

    Article  CAS  Google Scholar 

  • FAO (2013) Cultured Aquatic Species Information Programme. Ruditapes philippinarum. In: Goulletquer P (Hrsg.). FAO Fisheries and Aquaculture Department, Rome http://www.fao.org/fishery/culturedspecies/Ruditapes_philippinarum/en

  • Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444

    Article  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  Google Scholar 

  • García-Negrete CA, Blasco J, Volland M, Rojas TC, Hampel M, Lapresta-Fernández A, Jimenez de Haro MC, Soto M, Fernandez A (2013) Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environ Pollut 174:134–141

    Article  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294

    Article  CAS  Google Scholar 

  • Goldberg ED (1986) The Mussel Watch concept. Environ Monit Assess 7:91–103

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  Google Scholar 

  • Grabinski C, Schaeublin N, Wijaya A, D’Couto H, Baxamusa SH, Hamad-Schifferli K, Hussain SM (2011) Effect of gold nanorod surface chemistry on cellular response. ACS Nano 5:2870–2879

    Article  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  Google Scholar 

  • Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159

    Article  CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    CAS  Google Scholar 

  • Khan JA, Pillai B, Das TK, Singh Y, Maiti S (2007) Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem 8:1237–1240

    Article  CAS  Google Scholar 

  • Lapresta-Fernández A, Fernandez A, Blasco J (2012) Public concern over ecotoxicology risks from nanomaterials: pressing need for research-based information. Environ Int 39:148–149

    Article  Google Scholar 

  • Li JJ, Zou L, Hartono D, Ong CN, Bay BH, Lanry Yung LY (2008) Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20:138–142

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  Google Scholar 

  • Martín-Díaz ML, Blasco J, Gonzalez de Canales M, Sales D, DelValls TA (2005) Bioaccumulation and toxicity of dissolved heavy metals from the Guadalquivir Estuary after the Aznalcóllar mining spill using Ruditapes philippinarum. Arch Environ Contam Toxicol 48:233–241

    Article  Google Scholar 

  • Matozzo V, Binelli A, Parolini M, Previato M, Masiero L, Finos L, Bressan M, Marin MG (2012) Biomarker responses in the clam Ruditapes philippinarum and contamination levels in sediments from seaward and landward sites in the Lagoon of Venice. Ecol Indic 19:191–205

    Article  CAS  Google Scholar 

  • McFarland VA, Inouye LS, Lutz CH, Jarvis AS, Clarke JU, McCant DD (1999) Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch Environ Contam Toxicol 37:236–241

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect 113:823–839

  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076

    Article  CAS  Google Scholar 

  • Pan JF, Buffet PE, Poirier L, Amiard-Triquet C, Gilliland D, Joubert Y, Pilet P, Guibbolini M, Risso de Faverney C, Romeo M, Valsami-Jones E, Mouneyrac C (2012) Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana. Environ Pollut 168:37–43

    Article  CAS  Google Scholar 

  • Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    Article  CAS  Google Scholar 

  • Robledo R, Mossman B (1999) Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol 180:158–166

    Article  CAS  Google Scholar 

  • Tao Y, Pan L, Zhang H, Liu N (2013) Identification of genes differentially expressed in clams Ruditapes philippinarum in response to endosulfan after different exposure time. Ecotoxicol Environ Saf 89:108–116

    Article  CAS  Google Scholar 

  • Tedesco S, Doyle H, Redmond G, Sheehan D (2008) Gold nanoparticles and oxidative stress in Mytilus edulis. Mar Environ Res 66:131–133

    Article  CAS  Google Scholar 

  • Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186

    Article  CAS  Google Scholar 

  • Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509

    Article  CAS  Google Scholar 

  • Truong L, Zaikova T, Richman EK, Hutchison JE, Tanguay RL (2012) Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology 6:691–699

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:115

    Article  Google Scholar 

  • Vecchio G, Galeone A, Brunetti V, Maiorano G, Sabella S, Cingolani R, Pompa PP (2012) Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS ONE 7, e29980

    Article  CAS  Google Scholar 

  • Xu C, Pan L, Liu N, Wang L, Miao J (2010) Cloning, characterization and tissue distribution of a pi-class glutathione S-transferase from clam (Venerupis philippinarum): response to benzo[alpha]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol 152:160–166

    Article  Google Scholar 

  • Zhang L, Zhao J, Li C, Su X, Chen A, Li T, Qin S (2011) Cloning and characterization of allograft inflammatory factor-1 (AIF-1) from Manila clam Venerupis philippinarum. Fish Shellfish Immunol 30:148–153

    Article  CAS  Google Scholar 

  • Zook JM, Maccuspie RI, Locascio LE, Halter MD, Elliott JT (2011) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5:517–530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the regional government of Andalusia (Junta de Andalucía) project PE2011-RNM-7812 and the Spanish government Plan Nacional I+D+I project CTM2012-3872-C03-03, as well as supported by the Erasmus Mundus Ph.D. fellowship in Marine and Coastal Management to M. V. (as coordinated by the University of Cadiz, Spain). The authors would also like to thank Carlos García Negrete and Asunción Fernández Camacho of the Institute of Materials Science of Sevilla (CSIC-University of Seville, Spain), Laura Martín-Díaz from the Andalusian Centre for Science and Marine Technologies (CACYTMAR) – University of Cadiz (Spain), as well as Maria João Bebianno and Tânia Gomes from the Centre for Marine and Environmental Research (CIMA) - University of the Algarve (Portugal) for their assistance.

Conflict of interest

All authors declare to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Volland.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volland, M., Hampel, M., Martos-Sitcha, J.A. et al. Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response. Environ Sci Pollut Res 22, 17414–17424 (2015). https://doi.org/10.1007/s11356-015-4718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4718-x

Keywords

Navigation