Skip to main content
Log in

The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34(20):4259–4265. doi:10.1021/es001069+

    CAS  Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183

    CAS  Google Scholar 

  • Allen-King RM, Grathwohl P, Ball WP (2002) New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Adv Water Resour 25(8–12):985–1016. doi:10.1016/s0309-1708(02)00045-3

    CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54(5):309–320

    CAS  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640. doi:10.1021/ie0207919

    CAS  Google Scholar 

  • Asada T, Ishihara S, Yamane T, Toba A, Yamada A, Oikawa K (2002) Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J Health Sci 48(6):473–479

    CAS  Google Scholar 

  • Bagreev A, Bandosz TJ, Locke DC (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39(13):1971–1979

    CAS  Google Scholar 

  • Bailey VL, Fansler SJ, Smith JL, Bolton H Jr (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43(2):296–301

    CAS  Google Scholar 

  • Baker JE, Eisenreich SJ (1990) Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated biphenyls across the air–water interface of Lake Superior. Environ Sci Technol 24(3):342–352

    CAS  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33(9):1093–1109

    CAS  Google Scholar 

  • Ball P, MacKenzie M, DeLuca T, Montana W (2010) Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J Environ Qual 39(4):1243–1253

    CAS  Google Scholar 

  • Barrow C (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Google Scholar 

  • Beaton J, Peterson H, Bauer N (1960) Some aspects of phosphate adsorption by charcoal. Soil Sci Soc Am J 24(5):340–346

    CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282

    CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96(9):1049–1055. doi:10.1016/j.biortech.2004.09.008

    CAS  Google Scholar 

  • Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45(2):115–131

    Google Scholar 

  • Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol Biochem 43(4):778–786

    CAS  Google Scholar 

  • Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52(10):1717–1726

    CAS  Google Scholar 

  • Bornemann LC, Kookana RS, Welp G (2007) Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 67(5):1033–1042. doi:10.1016/j.chemosphere.2006.10.052

    CAS  Google Scholar 

  • Brändli RC, Hartnik T, Henriksen T, Cornelissen G (2008) Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 73(11):1805–1810. doi:10.1016/j.chemosphere.2008.08.034

    Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sust Energ 28(3):386–396

    CAS  Google Scholar 

  • Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37(3):321–333

    CAS  Google Scholar 

  • Bushnaf KM, Puricelli S, Saponaro S, Werner D (2011) Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J Contam Hydrol 126(3–4):208–215. doi:10.1016/j.jconhyd.2011.08.008

    CAS  Google Scholar 

  • Canadian-Council-of-Ministers-of-the-Environment-(CCME) (2008) Canada-wide standard for petroleum hydrocarbons (PHC) In soil-technical supplement

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    CAS  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Biochar for Environmental Management: Science and Technology Earthscan, London, pp 67–84

    Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008a) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629–634

    Google Scholar 

  • Chan K, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008b) Using poultry litter biochars as soil amendments. Soil Res 46(5):437–444

    Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1):127–133. doi:10.1016/j.chemosphere.2009.02.004

    CAS  Google Scholar 

  • Chen B, Huang W (2011) Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants. Environ Pollut 159(2):550–556

    CAS  Google Scholar 

  • Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments 11(1):62–71. doi:10.1007/s11368-010-0266-7

    Google Scholar 

  • Chen B, Xuan X, Zhu L, Wang J, Gao Y, Yang K, Shen X, Lou B (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38(16):3558–3568

    CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143. doi:10.1021/es8002684

    CAS  Google Scholar 

  • Chen H, Yao J, Wang F, Choi MM, Bramanti E, Zaray G (2009) Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. J Hazard Mater 167(1):846–851

    CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723

    CAS  Google Scholar 

  • Chen B, Yuan M, Qian L (2012a) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12(9):1350–1359

    CAS  Google Scholar 

  • Chen Z, Chen B, Chiou CT (2012b) Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environ Sci Technol 46(20):11104–11111

    CAS  Google Scholar 

  • Chen Z, Chen B, Zhou D, Chen W (2012c) Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environ Sci Technol 46(22):12476–12483

    CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488. doi:10.1016/j.orggeochem.2006.06.022

    CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610. doi:10.1016/j.gca.2008.01.010

    CAS  Google Scholar 

  • Cho Y-M, Werner D, Choi Y, Luthy RG (2012) Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon. J Contam Hydrol 129–130:25–37. doi:10.1016/j.jconhyd.2011.09.009

    Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655. doi:10.1021/es035034w

    CAS  Google Scholar 

  • Cimò G, Kucerik J, Berns AE, Schaumann GE, Alonzo G, Conte P (2014) Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. J Agric Food Chem 62(8):1912–1918

    Google Scholar 

  • Cohen-Ofri I, Popovitz-Biro R, Weiner S (2007) Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy. Chem Eur J 13(8):2306–2310

    CAS  Google Scholar 

  • Cornelissen G, Rigterink H, Ferdinandy MMA, van Noort PCM (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32(7):966–970. doi:10.1021/es9704038

    CAS  Google Scholar 

  • Cornelissen G, Rigterink H, van Noort PCM, Govers HAJ (2000) Slowly and very slowly desorbing organic compounds in sediments exhibit langmuir-type sorption. Environ Toxicol Chem 19(6):1532–1539. doi:10.1002/etc.5620190609

    CAS  Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39(18):6881–6895. doi:10.1021/es050191b

    CAS  Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43(10):2127–2134

    CAS  Google Scholar 

  • Das K, Garcia-Perez M, Bibens B, Melear N (2008) Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth. J Environ Sci Health A 43(7):714–724

    CAS  Google Scholar 

  • Day D, Evans RJ, Lee JW, Reicosky D (2004) Valuable and stable carbon co-product from fossil fuel exhaust scrubbing. Prepr Pap Am Chem Soc Div Fuel Chem 49(1):352

    CAS  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74(4):1259–1270

    CAS  Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77(4):1315–1324

    CAS  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70(2):448–453. doi:10.2136/sssaj2005.0096

    CAS  Google Scholar 

  • Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001) Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33(12):1599–1611

    CAS  Google Scholar 

  • Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, Niaz MS, Ramesh A (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C 29(4):324–357

    CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London

    Google Scholar 

  • Durenkamp M, Luo Y, Brookes P (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42(11):2026–2029

    CAS  Google Scholar 

  • Eckmeier E, Gerlach R, Skjemstad J, Ehrmann O, Schmidt M (2007) Minor changes in soil organic carbon and charcoal concentrations detected in a temperate deciduous forest a year after an experimental slash-and-burn. Biogeosciences 4(3):377–383

    CAS  Google Scholar 

  • Edwards D, Andriot M, Amoruso M, Tummey A, Bevan C, Tveit A, Hayes L, Youngren S, Nakles D (1997) Development of fraction specific reference doses (RfDs) and refernce concentrations (RfCs) for total petroleum hydrocarbons (TPH). Total Pet Hydrocarb Work Group Ser 4

  • Endo S, Grathwohl P, Haderlein SB, Schmidt TC (2009) Effects of native organic material and water on sorption properties of reference diesel soot. Environ Sci Technol 43(9):3187–3193

    CAS  Google Scholar 

  • Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E (2012) Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol 42(22):2311–2364

    CAS  Google Scholar 

  • Ezawa T, Yamamoto K, Yoshida S (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci Plant Nutr 48(6):897–900

    Google Scholar 

  • Fagernäs L, Kuoppala E, Simell P (2012) Polycyclic aromatic hydrocarbons in birch wood slow pyrolysis products. Energy Fuel 26(11):6960–6970

    Google Scholar 

  • Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA (2013) Microbial utilisation of biochar-derived carbon. Sci Total Environ 465:288–97

    CAS  Google Scholar 

  • Fu PP (1990) Metabolism of nitro-polycyclic aromatic hydrocarbons. Drug Metab Rev 22(2–3):209–268

    CAS  Google Scholar 

  • Fu PP, Xia Q, Sun X, Yu H (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)—light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C 30(1):1–41. doi:10.1080/10590501.2012.653887

    CAS  Google Scholar 

  • George N, Davies JT (1988) Parameters affecting adsorption of microorganisms on activated charcoal cloth. J Chem Technol Biotechnol 43(3):173–186

    CAS  Google Scholar 

  • Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME (2011) Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ Pollut 159(2):616–622. doi:10.1016/j.envpol.2010.09.037

    CAS  Google Scholar 

  • Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60(1):192–205

    CAS  Google Scholar 

  • Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 31(6):1504–1512. doi:10.1016/s0043-1354(96)00402-2

    CAS  Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231(1–3):86–93. doi:10.1016/j.foreco.2006.05.004

    Google Scholar 

  • Gupta V, Carrott P, Ribeiro Carrott M, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39(10):783–842

    Google Scholar 

  • Haefele S, Knoblauch C, Gummert M, Konboon Y, Koyama S (2009) Black carbon (biochar) in rice-based systems: characteristics and opportunities. In: Amazonian Dark Earths: Wim Sombroek's Vision. Springer, pp 445–463

  • Hale S, Hanley K, Lehmann J, Zimmerman A, Cornelissen G (2011) Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ Sci Technol 45(24):10445–10453

    CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35(7):823–830. doi:10.1016/j.orggeochem.2004.03.003

    CAS  Google Scholar 

  • Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    CAS  Google Scholar 

  • Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. CUP Archive

  • Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41(4):1096–1106

    CAS  Google Scholar 

  • Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34(19):4103–4110. doi:10.1021/es001178o

    CAS  Google Scholar 

  • Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ Sci Technol 35(22):4577–4583

    CAS  Google Scholar 

  • Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36(22):4795–4803. doi:10.1021/es020626k

    CAS  Google Scholar 

  • Hilber I, Wyss GS, Mader P, Bucheli TD, Meier I, Vogt L, Schulin R (2009) Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers. Environ Pollut 157(8–9):2224–2230

    CAS  Google Scholar 

  • Hilber I, Blum F, Leifeld J, Schmidt H-P, Bucheli TD (2012) Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. J Agric Food Chem 60(12):3042–3050

    CAS  Google Scholar 

  • Hilscher A, Knicker H (2011) Carbon and nitrogen degradation on molecular scale of grass-derived pyrogenic organic material during 28 months of incubation in soil. Soil Biol Biochem 43(2):261–270

    CAS  Google Scholar 

  • Hockaday WC (2006) The organic geochemistry of charcoal black carbon in the soils of the University of Michigan Biological Station. Ohio State University

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Acta 71(14):3432–3445

    CAS  Google Scholar 

  • Huang W, Chen B (2010) Interaction mechanisms of organic contaminants with burned straw ash charcoal. J Environ Sci 22(10):1586–1594

    CAS  Google Scholar 

  • International-Biochar-Initiative (2012) Standardized product definition and product testing guidelines for biochar that is used in soil. IBI biochar standards

  • Ippolito J, Novak J, Busscher W, Ahmedna M, Rehrah D, Watts D (2012) Switchgrass biochar affects two Aridisols. J Environ Qual 41(4):1123–1130

    CAS  Google Scholar 

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar-amended soils

  • Jindo K, Sánchez-Monedero MA, Hernández T, García C, Furukawa T, Matsumoto K, Sonoki T, Bastida F (2012) Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci Total Environ 416:476–481

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84

    CAS  Google Scholar 

  • Jones KC, De Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100(1):209–221

    CAS  Google Scholar 

  • Jonker MTO, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Environ Sci Technol 36(17):3725–3734. doi:10.1021/es020019x

    CAS  Google Scholar 

  • Jonker MTO, Hawthorne SB, Koelmans AA (2005) Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction. Environ Sci Technol 39(20):7889–7895. doi:10.1021/es0505191

    CAS  Google Scholar 

  • Joseph S, Camps-Arbestain M, Lin Y, Munroe P, Chia C, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh B (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515

    CAS  Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44(16):6189–6195

    CAS  Google Scholar 

  • Kawamoto K, Ishimaru K, Imamura Y (2005) Reactivity of wood charcoal with ozone. J Wood Sci 51(1):66–72

    CAS  Google Scholar 

  • Keck J, Sims RC, Coover M, Park K, Symons B (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Water Res 23(12):1467–1476

    CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419

    CAS  Google Scholar 

  • Keith A, Singh B, Singh BP (2011) Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol 45(22):9611–9618

    CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31(1):214–217. doi:10.1021/es960354j

    CAS  Google Scholar 

  • Khodadad CL, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43(2):385–392

    CAS  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res 48(7):577–585

    CAS  Google Scholar 

  • Kinney T, Masiello C, Dugan B, Hockaday W, Dean M, Zygourakis K, Barnes R (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43

    CAS  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73(4):1173–1181. doi:10.2136/sssaj2008.0232

    CAS  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40(2):425–433

    CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    CAS  Google Scholar 

  • Kwon S, Pignatello JJ (2005) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environ Sci Technol 39(20):7932–7939

    CAS  Google Scholar 

  • Laborda F, Monistrol I, Luna N, Fernandez M (1999) Processes of liquefaction/solubilization of Spanish coals by microorganisms. Appl Microbiol Biotechnol 52(1):49–56

    CAS  Google Scholar 

  • Lehannes J, Joseph S (2009) Biochar for environmental management: an introduction. biochar for environmental management: science and technology. Earthscan, London, pp 1–12

    Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387. doi:10.1890/1540-9295(2007)5[381:bitb]2.0.co;2

    Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. In: Joseph JLS (ed) Biochar for environmental management. Earthscan, London, pp 183–206

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836

    CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad J, Thies J, Luizao F, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    CAS  Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes P (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43(11):2304–2314

    CAS  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Techn 31(12):3341–3347. doi:10.1021/es970512m

    CAS  Google Scholar 

  • MacKenzie M, DeLuca T (2006) Charcoal and shrubs modify soil processes in ponderosa pine forests of western Montana. Plant Soil 287(1–2):257–266

    CAS  Google Scholar 

  • Major J, Steiner C, Downie A, Lehmann J (2009) Biochar effects on nutrient leaching. biochar for environmental management: science and technology. Earthscan, London, pp 271–282

    Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16(4):1366–1379

    Google Scholar 

  • Mannino A, Harvey HR (2004) Black carbon in estuarine and coastal ocean dissolved organic matter. Limnol Oceanogr 49(3):735–740

    CAS  Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954

    Google Scholar 

  • Masiello CA, Druffel ER (2001) Carbon isotope geochemistry of the Santa Clara River. Glob Biogeochem Cycles 15(2):407–416

    CAS  Google Scholar 

  • Matlack GR (2001) Factors determining the distribution of soil nematodes in a commercial forest landscape. For Ecol Manag 146(1):129–143

    Google Scholar 

  • McBeath AV, Smernik RJ (2009) Variation in the degree of aromatic condensation of chars. Org Geochem 40(12):1161–1168

    CAS  Google Scholar 

  • McLaughlin H, Anderson PS, Shields FE, Reed TB (2009) All biochars are not created equal, and how to tell them apart. North American Biochars Conference, Boulder, pp 9–12

    Google Scholar 

  • McVeety BD, Hites RA (1988) Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. Atmos Environ (1967) 22(3):511–536

    CAS  Google Scholar 

  • Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36

    CAS  Google Scholar 

  • Meynet P, Hale SE, Davenport RJ, Cornelissen G, Breedveld GD, Werner D (2012) Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ Sci Technol 46(9):5057–5066. doi:10.1021/es2043905

    CAS  Google Scholar 

  • Meynet P, Moliterni E, Davenport RJ, Sloan WT, Camacho JV, Werner D (2014) Predicting the effects of biochar on volatile petroleum hydrocarbon biodegradation and emanation from soil: a bacterial community finger-print analysis inferred modelling approach. Soil Biol Biochem 68:20–30

    CAS  Google Scholar 

  • Moreno-Castilla C, Lopez-Ramon M, Carrasco-Marın F (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38(14):1995–2001

    CAS  Google Scholar 

  • Morris D, Gilbert R, Reicosky D, Gesch R (2004) Oxidation potentials of soil organic matter in histosols under different tillage methods. Soil Sci Soc Am J 68(3):817–826

    CAS  Google Scholar 

  • Mukome FN, Zhang X, Silva LC, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem 61(9):2196–2204

    CAS  Google Scholar 

  • Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method. Geoderma 138(1):133–143

    CAS  Google Scholar 

  • Nguyen TH, Ball WP (2006) Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane soot. Environ Sci Technol 40(9):2958–2964

    CAS  Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40(8):846–853

    CAS  Google Scholar 

  • Nguyen TH, Cho H-H, Poster DL, Ball WP (2007) Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ Sci Technol 41(4):1212–1217

    CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44(9):3324–3331

    CAS  Google Scholar 

  • Noguera D, Rondón M, Laossi K-R, Hoyos V, Lavelle P, Cruz de Carvalho MH, Barot S (2010) Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol Biochem 42(7):1017–1027

    CAS  Google Scholar 

  • Noordkamp E, Grotenhuis J, Rulkens W (1997) Selection of an efficient extraction method for the determination of polycyclic aromatic hydrocarbons in contaminated soil and sediment. Chemosphere 35(9):1907–1917

    CAS  Google Scholar 

  • O’Neill B, Grossman J, Tsai M, Gomes J, Lehmann J, Peterson J, Neves E, Thies J (2009) Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58(1):23–35

    Google Scholar 

  • Ogawa M (1994) Symbiosis of people and nature in the tropics. Farming Jpn 28(5):10–34

    Google Scholar 

  • Oleszczuk P, Hale SE, Lehmann J, Cornelissen G (2012) Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour Technol 111:84–91

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64(8):3123–3126

    CAS  Google Scholar 

  • Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohydr Polym 36(4):335–347

    CAS  Google Scholar 

  • Paul EA (2006) Soil microbiology, ecology and biochemistry. Academic press

  • Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res Genet Toxicol Environ Mutagen 443(1):139–147

    CAS  Google Scholar 

  • Phillips D, Foss J, Buckner E, Evans R, FitzPatrick E (2000) Response of surface horizons in an oak forest to prescribed burning. Soil Sci Soc Am J 64(2):754–760

    CAS  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89(2):231–242. doi:10.1034/j.1600-0706.2000.890203.x

    Google Scholar 

  • Pignatello JJ, Xing B (1995) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30(1):1–11. doi:10.1021/es940683g

    Google Scholar 

  • Pignatello JJ, Kwon S, Lu Y (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40(24):7757–7763. doi:10.1021/es061307m

    CAS  Google Scholar 

  • Pollock M (1947) The growth of H. pertussis on media without blood. Br J Exp Pathol 28(4):295

    CAS  Google Scholar 

  • Qin G, Gong D, Fan M-Y (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegrad 85:150–155

    CAS  Google Scholar 

  • Raza M, Zakaria MP, Hashim NR, Yim UH, Kannan N, Ha SY (2013) Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia: indication of anthropogenic input. Environ Earth Sci 1-12

  • Rhodes AH, Carlin A, Semple KT (2008) Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ Sci Technol 42(3):740–745. doi:10.1021/es071451n

    CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6):699–708

    Google Scholar 

  • Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, Ramsay J, Sing K, Unger K (1994) Recommendations for the characterization of porous solids (technical report). Pure Appl Chem 66(8):1739–1758

    CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351

    Google Scholar 

  • Rügner H, Kleineidam S, Grathwohl P (1999) Long term sorption kinetics of phenanthrene in aquifer materials. Environ Sci Technol 33(10):1645–1651. doi:10.1021/es980664x

    Google Scholar 

  • Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil 244(1–2):273–279

    CAS  Google Scholar 

  • Samonin V, Elikova E (2004) A study of the adsorption of bacterial cells on porous materials. Microbiology 73(6):696–701

    CAS  Google Scholar 

  • Sander M, Pignatello JJ (2005) Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments. Environ Sci Technol 39(6):1606–1615

    CAS  Google Scholar 

  • Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124

    CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14(3):777–793. doi:10.1029/1999gb001208

    CAS  Google Scholar 

  • Sims RC, Overcash M (1983) Fate of polynuclear aromatic compounds (PNAs) in soil–plant systems. In: Residue reviews. Springer, pp 1–68

  • Sinha R, Kulldorff M, Gunter MJ, Strickland P, Rothman N (2005) Dietary benzo [a] pyrene intake and risk of colorectal adenoma. Cancer Epidemiol Biomark Prev 14(8):2030–2034

    CAS  Google Scholar 

  • Smernik RJ (2009) Biochar and sorption of organic compounds. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 289–300

    Google Scholar 

  • Smith S, Ainsworth C, Traina S, Hicks R (1992) Effect of sorption on the biodegradation of quinoline. Soil Sci Soc Am J 56(3):737–746

    CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347

    CAS  Google Scholar 

  • Sparrevik M, Saloranta T, Cornelissen G, Eek E, Fet AM, Breedveld GD, Linkov I (2011) Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation. Environ Sci Technol 45(10):4235–4241

    CAS  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3(1):4

    Google Scholar 

  • Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, Ro KS (2011) Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85(5):869–882

    CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41(6):1301–1310. doi:10.1016/j.soilbio.2009.03.016

    CAS  Google Scholar 

  • Steiner C, TEiXEiRA WG, Lehmann J, Zech W (2004) Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earths in Central Amazonia—preliminary results. Amazonian Dark Earths: Explorations in space and time 195–212

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51(5–6):359–366. doi:10.1016/j.pedobi.2007.08.002

    Google Scholar 

  • Steiner C, Garcia M, Zech W (2009) Effects of charcoal as slow release nutrient carrier on NPK dynamics and soil microbial population: pot experiments with ferralsol substrate. In: Amazonian Dark Earths: Wim Sombroek's Vision. Springer, pp 325–338

  • Tang J, Robertson BK, Alexander M (1999) Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ Sci Technol 33(23):4346–4351. doi:10.1021/es990581w

    CAS  Google Scholar 

  • Thanh Nguyen B, Marschner P (2005) Effect of drying and rewetting on phosphorus transformations in red brown soils with different soil organic matter content. Soil Biol Biochem 37(8):1573–1576

    Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar—biological properties. In: Lehmann JSJ (ed) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Titirici MM, Thomas A, Yu S-H, Müller J-O, Antonietti M (2007) A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19(17):4205–4212

    CAS  Google Scholar 

  • Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76(1–2):230–237. doi:10.1016/j.jaap.2005.11.007

    CAS  Google Scholar 

  • van Noort PCM, Cornelissen G, ten Hulscher TEM, Vrind BA, Rigterink H, Belfroid A (2003) Slow and very slow desorption of organic compounds from sediment: influence of sorbate planarity. Water Res 37(10):2317–2322. doi:10.1016/s0043-1354(02)00628-0

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246

    Google Scholar 

  • Vasilyeva GK, Strijakova ER, Nikolaeva SN, Lebedev AT, Shea PJ (2010) Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environ Pollut 158(3):770–777

    CAS  Google Scholar 

  • Vazquez-Duhalt R (1989) Environmental impact of used motor oil. Sci Total Environ 79(1):1–23. doi:10.1016/0048-9697(89)90049-1

    CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    CAS  Google Scholar 

  • Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7(2):117–126. doi:10.1002/elsc.200620176

    CAS  Google Scholar 

  • Wang H, Lin K, Hou Z, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10(2):283–289. doi:10.1007/s11368-009-0111-z

    CAS  Google Scholar 

  • Wardle DA (1998) Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol Biochem 30(13):1627–1637. doi:10.1016/s0038-0717(97)00201-0

    CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115(3):419–426. doi:10.1007/s004420050536

    Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320(5876):629–629

    CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300(1–2):9–20

    CAS  Google Scholar 

  • Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G (2006) Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ 367(1):383–393

    CAS  Google Scholar 

  • Wessels JG (1999) Fungi in their own right. Fungal Genet Biol 27(2):134–145

    CAS  Google Scholar 

  • White JC, Kelsey JW, Hatzinger PB, Alexander M (1997) Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ Toxicol Chem 16(10):2040–2045. doi:10.1002/etc.5620161008

    CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81(3):229–249

    CAS  Google Scholar 

  • Wu J, Brookes P (2005) The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol Biochem 37(3):507–515

    CAS  Google Scholar 

  • Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environ Sci Technol 31(3):792–799

    CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52(4):489–495

    CAS  Google Scholar 

  • Yip K, Xu M, Li C-Z, Jiang SP, Wu H (2010) Biochar as a fuel: 3. mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity. Energy Fuel 25(1):406–414

    Google Scholar 

  • Young DF, Ball WP (1994) A priori simulation of tetrachloroethene transport through aquifer material using an intraparticle diffusion model. Environ Prog 13(1):9–20. doi:10.1002/ep.670130112

    CAS  Google Scholar 

  • Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    CAS  Google Scholar 

  • Zackrisson O, Nilsson M-C, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 10-19

  • Zavalloni C, Alberti G, Biasiol S, Vedove GD, Fornasier F, Liu J, Peressotti A (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51

    Google Scholar 

  • Zhang T, Walawender WP, Fan L, Fan M, Daugaard D, Brown R (2004) Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem Eng J 105(1):53–59

    CAS  Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158(9):2821–2825

    CAS  Google Scholar 

  • Zhang W, Sun H, Wang L (2013) Influence of the interactions between black carbon and soil constituents on the sorption of pyrene. Soil Sediment Contam Int J 22(4):469–482

    CAS  Google Scholar 

  • Zhou J, He Z, Van Nostrand JD, Wu L, Deng Y (2010) Applying GeoChip analysis to disparate microbial communities. Microbe 5:60–65

    Google Scholar 

  • Zhu D, Kwon S, Pignatello JJ (2005) Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ Sci Technol 39(11):3990–3998. doi:10.1021/es050129e

    CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301. doi:10.1021/es903140c

    CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43(6):1169–1179

    CAS  Google Scholar 

  • Zimmermann M, Bird MI, Wurster C, Saiz G, Goodrick I, Barta J, Capek P, Santruckova H, Smernik R (2012) Rapid degradation of pyrogenic carbon. Glob Chang Biol 18(11):3306–3316

    Google Scholar 

Download references

Acknowledgments

This work was supported by Exploratory Research Grant Scheme L4077 of the Universiti Teknologi Malaysia. The comments made by reviewers are gratefully acknowledged for improving this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adibah Yahya.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anyika, C., Abdul Majid, Z., Ibrahim, Z. et al. The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a review. Environ Sci Pollut Res 22, 3314–3341 (2015). https://doi.org/10.1007/s11356-014-3719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3719-5

Keywords

Navigation