Skip to main content

Advertisement

Log in

Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March–11 April 2002 which includes a pollution period (30 March–01 April) when the highest concentrations of major anthropogenic species (nss-SO4 2−, NO3 , and NH4 +) were observed and a strong Asian dust (AD) period (08–10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal S, Aggarwal SG, Okuzawa K, Kawamura K (2010) Size distributions of dicarboxylic acids, ketoacids, a-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos Chem Phys 10:5839–5858

    Article  CAS  Google Scholar 

  • Alves C, Vicente A, Nunes T, Goncalves C, Fernandes AP, Mirante F, Tarelho L, Sanchez de la Campa AM, Querol X, Caseiro A (2011) Summer 2009 wildfires in Portugal: emission of trace gases and aerosol composition. Atmos Environ 4:641–649

    Article  Google Scholar 

  • Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  CAS  Google Scholar 

  • Arimoto R, Kim YJ, Kim YP, Quinn PK, Bates TS, Anderson TL, Gong S, Uno I, Chin M, Huebert BJ (2006) Characterization of Asian dust during ACE-Asia. Global Planet Chang 52:23–56

    Article  Google Scholar 

  • Bahadur R, Habib G, Russell LM (2009) Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric measurements by evolved gas analysis. Atmos Environ 43:1591–1602

    Article  CAS  Google Scholar 

  • Bannikov MV, Umarova AB, Butylkina MA (2003) Russian Federation Fire 2002 Special. International Forest Fire News/Global Fire Monitoring Center. http://forest.akadem.ru/Articles/03/Gold.pdf. Accessed 26 June 2011

  • Battye W, Battye R (2002) Development of emissions inventory methods for wildland fire. U.S. Environmental Protection Agency, Chapell Hill, p 91

    Google Scholar 

  • Cachier H, Ducret J, Bremond MP, Yoboue V, Lacaux JP, Gaudichet A, Baudet J (1991) Biomass burning in a savannah region of the Ivory Coast. In: Levine JS (ed) Global biomass burning: atmospheric, climactic and biospheric implications. MIT Press, New York, pp 174–180

    Google Scholar 

  • Cachier H, Liousse C, Buatmenard P, Gaudichet A (1995) Particulate content of savanna fire emissions. J Atmos Chem 22:123–148

    Article  CAS  Google Scholar 

  • Cao JJ, Xu BQ, He JQ, Liu XQ, Han YM, Wang G, Zhu C (2009) Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote mountainous region in western China. Atmos Environ 43:4444–4452

    Article  CAS  Google Scholar 

  • Cheng MT, Lin YC, Chio CP, Wang CF, Kuo CY (2005) Characteristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000. Chemosphere 61:1439–1450

    Article  CAS  Google Scholar 

  • Cheng Y, Zheng M, He K, Chen Y, Yan B, Russell AG, Shi W, Jiao Z, Sheng G, Fu J, Edgerton ES (2011) Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: results from the southeastern United States. Atmos Environ 45:1913–1918

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 34:23–34

    Article  CAS  Google Scholar 

  • Chuang MT, Lee CT, Chou CCK, Lin NH, Sheu GR, Wang JL, Chang SC, Wang SH, Chi KH, Young CY, Huang H, Chen HW, Weng GH, Lai SY, Hsu SP, Chang YJ, Chang JH, Wu XC (2014) Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: long-term observation at Mt. Lulin. Atmos Environ 89:507–516

    Article  CAS  Google Scholar 

  • Davies DK, Ilavajhala S, Wong MM, Justice CO (2009) Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE T Geosci Remote 47:72–79

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD

  • Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282

    Article  CAS  Google Scholar 

  • Ferek RJ, Reid JS, Hobbs PV, Blake DR, Liousse C (1998) Emission factors of hydrocarbons, trace gases and particles from biomass burning in Brazil. J Geophys Res 103:32107–32118

    Article  CAS  Google Scholar 

  • Fung K (1990) Particulate carbon speciation by MnO2 oxidation. Aerosol Sci Technol 12:122–127

    Article  CAS  Google Scholar 

  • Fung K, Chow JC, Watson JG (2002) Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the IMPROVE method. J Air Waste Manage Assoc 52:1333–1341

    Article  CAS  Google Scholar 

  • Goldammer JG, Davidenko EP, Kondrashov LG, Ezhov NI (2004) Regional forest congress forest policy: problems and solutions? Int Forest Fire News 31:90–103

    Google Scholar 

  • Han JS, Ghim YS, Moon KJ, Ahn JY, Kim JE, Ryu SY, Kim YJ, Kong BJ, Lee SJ (2004) Concentration variations of trace elements in Gosan, Jeju during the polluted period in November 2001 and the Yellow Sand period in spring 2002. J Korean Soc Atmos Environ 20:143–151

    Google Scholar 

  • Hara Y, Yumimoto K, Uno I, Shimizu A, Sugimoto N, Liu Z, Winker DM (2009) Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model. Atmos Chem Phys 9:1227–1239

    Article  CAS  Google Scholar 

  • Harris JM, Kahl JDW (1994) Analysis of 10-day isentropic flow patterns for Barrow, Alaska: 1985–1992. J Geophys Res-Atmos 99:25845–25855

    Article  Google Scholar 

  • He Z, Kim YJ, Ogunjobi KO, Kim JE, Ryu SY (2004) Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002. Atmos Environ 38:1795–1800

    Article  CAS  Google Scholar 

  • Hwang HJ, Kim HK, Ro CU (2008) Single-particle characterization of aerosol samples collected before and during an Asian dust storm in Chuncheon, Korea. Atmos Environ 42:8738–8746

    Article  CAS  Google Scholar 

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Kim J (2008) Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos Environ 42:4778–4789

    Article  CAS  Google Scholar 

  • Kim YP, Moon KC, Shim SG, Lee JH, Kim JY, Fung K, Carmichael GR, Song CH, Kang CH, Kim HK (2000) Carbonaceous species in fine particles at the background sites in Korea between 1994 and 1999. Atmos Environ 34:5053–5060

    Article  CAS  Google Scholar 

  • Kim KW, Kim YJ, Oh SJ (2001) Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea. Atmos Environ 35:5157–5167

    Article  CAS  Google Scholar 

  • Kim SW, Yoon SC, Jefferson A, Ogren JA, Dutton EG, Won JG, Ghim YS, Lee BI, Han JS (2005) Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmos Environ 39:39–50

    Article  CAS  Google Scholar 

  • Kim J, Yoon S, Jefferson A, Kim S (2006) Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001. Atmos Environ 40:1550–1560

    Article  CAS  Google Scholar 

  • Kim JY, Ghim YS, Song CH, Yoon SC, Han JS (2007) Seasonal characteristics of air masses arriving at Gosan, Korea, using fine particle measurements between November 2001 and August 2003. J Geophys Res 112, D07202

    Google Scholar 

  • Kim YJ, Woo JH, Ma YI, Kim S, Nam JS, Sung H, Choi KC, Seo J, Kim JS, Kang CH (2009) Chemical characteristics of long-range transport aerosol at background sites in Korea. Atmos Environ 43:5556–5566

    Article  CAS  Google Scholar 

  • Krivacsy Z, Hoffer A, Sarvari Z, Temesi D, Baltensperger U, Nyeki S, Weingartner E, Kleefeld S, Jennings S (2001) Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos Environ 35:6231–6244

    Article  CAS  Google Scholar 

  • Kuokka S, Teinila K, Saarnio K, Aurela M, Sillanpaa M, Hillamo R, Kerminen VM, Vartiainen E, Kulmala M, Skorokhod A (2007) Chemical composition of atmospheric aerosols between Moscow and Vladivostok. Atmos Chem Phys Discuss 7:7473–7508

    Article  Google Scholar 

  • Lee KH, Kim JE, Kim YJ, Kim J, Hoyningen HW (2005) Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmos Environ 39:85–99

    Article  CAS  Google Scholar 

  • Lee S, Kim HK, Yan B, Cobb CE, Hennigan C, Nichols S, Chamber M, Edgerton ES, Jansen JJ, Hu Y (2008) Diagnosis of aged prescribed burning plumes impacting an urban area. Environ Sci Technol 42:1438–1444

    Article  CAS  Google Scholar 

  • Lee T, Sullivan AP, Mack L, Jimenez JL, Kreidenweis SM, Onasch TB, Worsnop DR, Malm W, Wold CE, Hao WM (2010) Chemical smoke marker emissions during flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Sci Technol 44:1–5

    Article  Google Scholar 

  • Lim JY, Chun Y (2006) The characteristics of Asian dust events in Northeast Asia during the springtime from 1993 to 2004. Global Planet Chang 52:231–247

    Article  Google Scholar 

  • Lim HJ, Turpin BJ, Russell LM, Bates TS (2003) Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon. Environ Sci Technol 37:3055–3061

    Article  CAS  Google Scholar 

  • Lin CY, Liu SC, Chou CCK, Liu TH, Lee CT, Yuan CS, Shiu CJ, Young CY (2004) Long-range transport of Asian dust and air pollutants to Taiwan. TAO 15:759–784

    Google Scholar 

  • McMeeking GR, Kreidenweis SM, Lunden M, Carrillo J, Carrico CM, Lee T, Herckes P, Engling G, Day DE, Hand J (2006) Smoke-impacted regional haze in California during the summer of 2002. Agr Forest Meteorol 137:25–42

    Article  Google Scholar 

  • KMA (Korea Meteorological Administration) (2012) Climatological normals of Korea. (http://kma.go.kr/weather/climate/average_30years.jsp)

  • Mirante F, Salvador P, Pio C, Alves C, Artiñano B, Caseiro A, Revuelta MA (2014) Size fractionated aerosol composition at roadside and background environments in the Madrid urban atmosphere. Atmos Res 138:278–292

    Article  CAS  Google Scholar 

  • Miyazaki Y, Kondo Y, Han S, Koike M, Kodama D, Komazaki Y, Tanimoto H, Matsueda H (2007) Chemical characteristics of water-soluble organic carbon in the Asian outflow. J Geophys Res 112:D22S30

    Google Scholar 

  • Park SS, Bae MS, Schauer JJ, Ryu SY, Kim YJ, Cho SY, Kim SJ (2005a) Evaluation of the TMO and TOT methods for OC and EC measurements and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia. Atmos Environ 39:5101–5112

    Article  CAS  Google Scholar 

  • Park SS, Harrison D, Pancras J, Ondov JM (2005b) Highly time-resolved organic and elemental carbon measurements at the Baltimore Supersite in 2002. J Geophys Res 110:D07S06

    Google Scholar 

  • Park SS, Bae MS, Schauer JJ, Kim YJ, Yong CS, Jai KS (2006) Molecular composition of PM2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign. Atmos Environ 40:4182–4198

    Article  CAS  Google Scholar 

  • Park SS, Lee KH, Kim YJ, Kim TY, Cho SY, Kim SJ (2008) High time-resolution measurements of carbonaceous species in PM2.5 at an urban site of Korea. Atmos Res 89:48–61

    Article  CAS  Google Scholar 

  • Popovicheva O, Kistler M, Kireeva E, Persiantseva N, Timofeev M, Kasper-Giebl A (2014) Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmos Environ (in press)

  • Qu WJ, Zhang XY, Arimoto R, Wang YQ, Sheng LF, Fu G (2009) Aerosol background at two remote CAWNET sites in western China. Sci Total Environ 407:3518–3529

    Article  CAS  Google Scholar 

  • Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825

    Article  CAS  Google Scholar 

  • Ro CU, Hwang H, Kim HK, Chun Y, Van GR (2005) Single-particle characterization of four “Asian Dust” samples collected in Korea, using low-Z particle electron probe X-ray microanalysis. Environ Sci Technol 39:1409–1419

    Article  CAS  Google Scholar 

  • Rolph GD (2003) Real-time environmental applications and display system (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD

  • Ryu SY, Kim JE, Zhuanshi H, Kim YJ, Kang GU (2004) Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. J Air Waste Manage Assoc 54:1124–1137

    Article  CAS  Google Scholar 

  • Saarnio K, Aurela M, Timonen H, Saarikoski S, Teinila K, Makela T, Sofiev M, Koskinen J, Aalto PP, Kulmala M (2010) Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe. Sci Total Environ 408:2527–2542

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180

    Article  CAS  Google Scholar 

  • Stone EA, Yoon SC, Schauer JJ (2011) Chemical characterization of fine and coarse particles in Gosan, Korea during springtime dust events. Aerosol Air Qual Res 11:31–43

    CAS  Google Scholar 

  • Streets DG, Yarber KF, Woo JH, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cy 17:1099

    Article  Google Scholar 

  • Tsai YI, Chen CL (2006) Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmos Environ 40:4734–4750

    Article  CAS  Google Scholar 

  • Viana M, Lopez JM, Querol X, Alastuey A, Garcia-Gacio D, Blanco-Heras G, Lopez-Mahia P, Pineiro-Iglesias M, Sanz MJ, Sanz F, Chi X, Maenhaut W (2008) Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmos Environ 42:1941–1957

    Article  CAS  Google Scholar 

  • Ward DE, Setzer AW, Kaufman YJ, Rasmussen RA (1991) Characteristics of smoke emissions from biomass fires of the Amazon region-BASE-A experiment. In: Levine JS (ed) Biomass burning and global change. MIT Press, Cambridge, pp 394–402

    Google Scholar 

  • Wiedinmyer C, Bowers RM, Fierer N, Horanyi E, Hannigan M, Hallar A, McCubbin I, Baustian K (2009) The contribution of biological particles to observed particulate organic carbon at a remote high altitude site. Atmos Environ 43:4278–4282

    Article  CAS  Google Scholar 

  • Yamasoe MA, Artaxo P, Miguel AH, Allen AG (2000) Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos Environ 34:1641–1653

    Article  CAS  Google Scholar 

  • Zhang Y, Shao M (2007) Source profiles of particulate organic matters emitted from cereal straw burnings. J Environ Sci 19:167–175

    Article  CAS  Google Scholar 

  • Zhang XY, Wang YQ, Wang D, Gong SL, Arimoto R, Mao LJ, Li J (2005) Characterization and sources of regional-scale transported carbonaceous and dust aerosols from different pathways in coastal and sandy land areas of China. J Geophys Res 110:D15301

    Article  Google Scholar 

  • Zhang G, Li J, Li XD, Xu Y, Guo LL, Tang JH, Lee CSL, Liu X, Chen YJ (2010a) Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. Environ Pollut 158:3392–3400

    Article  CAS  Google Scholar 

  • Zhang Z, Engling G, Lin CY, Charles CKC, Shih-Chun C, Chang SY, Fan S, Chan CY, Zhang YH (2010b) Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmos Environ 44:3187–3195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Korea Ministry of Environment as an Eco-technopia 21 project under grant 2001-44001-8 and in part by the Korea Institute of Science and Technology. It was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0028597). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT trajectory model used in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Young Kim.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.L., Kim, J.Y., Ghim, Y.S. et al. Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period. Environ Sci Pollut Res 22, 3594–3605 (2015). https://doi.org/10.1007/s11356-014-3587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3587-z

Keywords

Navigation