Skip to main content
Log in

Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review

  • Degradation and transfer of polyacrylamide based floculents in sludges and industrial and natural waters
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this review was to summarize information and scientific data from the literature dedicated to the fate of polyacrylamide (PAM)-based flocculants in hydrosystems. Flocculants, usually composed of PAMs, are widely used in several industrial fields, particularly in minerals extraction, to enhance solid/liquid separation in water containing suspended matter. These polymers can contain residual monomer of acrylamide (AMD), which is known to be a toxic compound. This review focuses on the mechanisms of transfer and degradation, which can affect both PAM and residual AMD, with a special attention given to the potential release of AMD during PAM degradation. Due to the ability of PAM to adsorb onto mineral particles, its transport in surface water, groundwater, and soils is rather limited and restricted to specific conditions. PAM can also be a subject of biodegradation, photodegradation, and mechanical degradation, but most of the studies report slow degradation rates without AMD release. On the contrary, the adsorption of AMD onto particles is very low, which could favor its transfer in surface waters and groundwater. However, AMD transfer is likely to be limited by quick microbial degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Alim AH, Hamielec AE (1973) Shear degradation of water-soluble polymers. I. Degradation of polyacrylamide in a high-shear couette viscometer. J Appl Polym Sci 17:3769–3778

    Article  Google Scholar 

  • Aly SM, Letey J (1988) Polymer and water-quality effects on flocculation of montmorillonite. Soil Sci Soc Am J 52:1453–1458

    Article  CAS  Google Scholar 

  • Andersen FA (2005) Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int J Toxicol 24:21–50

    Article  CAS  Google Scholar 

  • Arrowood TJ (2008) Determining the fate and transport of the acrylamide monomer (AMD) in soil and groundwater systems, University of Nevada. University of Nevada at Las Vegas, Las Vegas, 132 pp

    Google Scholar 

  • Avadiar L, Leong Y, Fourie A, Nugraha T (2013) Behaviours of kaolin suspensions with different polyacrylamide (PAM) flocculants under shear. Chemeca 2013, Barton, ACT, 2013

  • Bao M, Chen Q, Li Y, Jiang G (2010) Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field. J Hazard Mater 184:105–110

    Article  CAS  Google Scholar 

  • Barvenik FW (1994) Polyacrylamide characteristics related to soil applications. Soil Sci 158:235–243

    Article  CAS  Google Scholar 

  • Benhur M, Faris J, Malik M, Letey J (1989) Polymers as soil conditioners under consecutive irrigations and rainfall. Soil Sci Soc Am J 53:1173–1177

    Article  Google Scholar 

  • Benhur M, Letey J (1989) Effect of polysaccharides, clay dispersion, and impact energy on water infiltration. Soil Sci Soc Am J 53:233–238

    Article  CAS  Google Scholar 

  • Benhur M, Malik M, Letey J, Mingelgrin U (1992) Adsorption of polymers on clays as affected by clay charge and structure, polymer properties, and water-quality. Soil Sci 153:349–356

    Article  CAS  Google Scholar 

  • Bicerano J (1994) Predicting key polymer properties to reduce erosion in irrigated soil. Soil Sci 158:255–266

    Article  CAS  Google Scholar 

  • Bottero L (1992) Séparation liquide/solide par coagulation-floculation: les coagulants/floculants, mécanismes d’agrégation, structures et densité des flocs. Mines et Carrières 4

  • Bouranis DL, Theodoropoulos AG, Drossopoulos JB (1995) Designing synthetic-polymers as soil conditioners. Commun Soil Sci Plant Anal 26:1455–1480

    Article  CAS  Google Scholar 

  • Bouranis DL (1998) Designing synthetic soil conditioners via postpolymerization reactions. Handbook of soil conditioners, 333–362

  • Brown L, Rhead M (1979) Liquid-chromatographic determination of acrylamide monomer in natural and polluted aqueous environments. Analyst 104:391–399

    Article  CAS  Google Scholar 

  • Brown L, Bancroft KCC, Rhead MM (1980) Laboratory studies on the adsorption of acrylamide monomer by sludge, sediments, clays, peat and synthetic resins. Water Res 14:779–781

    Article  Google Scholar 

  • Buranasilp K, Charoenpanich J (2011) Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. J Environ Sci (China) 23:396–403

    Article  CAS  Google Scholar 

  • Callebaut F, Gabriels D, De Boodt M (1979) The effect of polymer structure on soil physico-chemical properties and soil water evaporation. J Chem Technol Biotechnol 29(12):723–729

    Article  CAS  Google Scholar 

  • Caulfield MJ, Qiao GG, Solomon DH (2002) Some aspects of the properties and degradation of polyacrylamides. Chem Rev 102:3067–3084

    Article  CAS  Google Scholar 

  • Caulfield MJ, Hao X, Qiao GG, Solomon DH (2003) Degradation on polyacrylamides. Part I Lin Polyacryl Polymer 44:1331–1337

    CAS  Google Scholar 

  • Cavins JF, Friedman M (1968) Specific modification of protein sulfhydryl groups with alpha, beta-unsaturated compounds. J Biol Chem 243:3357–3360

    CAS  Google Scholar 

  • Cha M, Chambliss GH (2011) Characterization of acrylamidase isolated from a newly isolated acrylamide-utilizing bacterium, Ralstonia eutropha AUM-01. Curr Microbiol 62:671–678

    Article  CAS  Google Scholar 

  • Cha M, Chambliss GH (2013) Cloning and sequence analysis of the heat-stable acrylamidase from a newly isolated thermophilic bacterium, Geobacillus thermoglucosidasius AUT-01. Biodegradation 24:57–67

    Article  CAS  Google Scholar 

  • Chamberlain P, Cole R (1996) Influence of structure and formulation on the efficacy of polyacrylamides as soil stabilizers, managing irrigation-induced erosion and infiltration with polyacrylamide. College of Southern Idaho, Twin Falls, pp 83–87

    Google Scholar 

  • Chang SH, Ryan ME, Gupta RK, Swiatkiewicz B (1991) The adsorption of water soluble polymers on mica, talc limestone, and various clay minerals. Coll Surf 59:59–70

    Article  CAS  Google Scholar 

  • Charoenpanich J, Tani A (2014) Proteome analysis of acrylamide-induced proteins in a novel acrylamide-degrader Enterobacter aerogenes by 2D electrophoresis and MALDI-TOF-MS, CMU. J Nat Sci 13:11

    Google Scholar 

  • Chiappa L, Mennella A, Lockhart TP, Burrafato G (1999) Polymer adsorption at the brine/rock interface: the role of electrostatic interactions and wettability. J Pet Sci Eng 24:113–122

    Article  CAS  Google Scholar 

  • Clarke PH, Drew RE, Turberville C, Brammar WJ, Ambler RP, Auffret AD (1981) Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase. Biosci Rep 1:299–307

    Article  CAS  Google Scholar 

  • Cousens DJ, Clarke PH, Drew R (1987) The amidase regulatory gene (amiR) of Pseudomonas aeruginosa. J Gen Microbiol 133:2041–2052

    CAS  Google Scholar 

  • Croll BT, Arkell GM, Hodge RPJ (1974) Residues of acrylamide in water. Water Res 8:989–993

    Article  CAS  Google Scholar 

  • Crosby DG (1976) Herbicide photochemical decomposition. In: Kearney PCaK DD (ed) Berbicides: chemistry degradation and mode of action. Marcel Dekker Inc, New York, pp 836–841

    Google Scholar 

  • de Rosemond SJC, Liber K (2004) Wastewater treatment polymers identified as the toxic component of a diamond mine effluent. Environ Toxicol Chem 23:2234–2242

    Article  Google Scholar 

  • Decker C (1989) Effect of UV radiation polymers. In: Cheremisinoff NP (ed) Handbook of polymer science and technology. Marcel Dekker, New York, pp 541–608

    Google Scholar 

  • Deng YJ, Dixon JB, White GN, Loeppert RH, Juo ASR (2006) Bonding between polyacrylamide and smectite. Coll Surf Physicochem Eng Asp 281:82–91

    Article  CAS  Google Scholar 

  • Egorova K, Trauthwein H, Verseck S, Antranikian G (2004) Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Appl Microbiol Biotechnol 65:38–45

    Article  CAS  Google Scholar 

  • El-Mamouni R, Frigon JC, Hawari J, Marroni D, Guiot S (2002) Combining photolysis and bioprocesses for mineralization of high molecular weight polyacrylamides. Biodegradation 13:221–227

    Article  CAS  Google Scholar 

  • ElHardy OA, Abd ElHardy BM (1989) The interaction between polyacrylamide as a conditioner for sandy soils and some plant nutrients. I. Effect on the mechanical strength and stability and soil structure. Egypt J Soil Sci 219:51–56

    Google Scholar 

  • Entry JA, Sojka RE, Watwood M, Ross C (2002) Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants. Environ Pollut 120:191–200

    Article  CAS  Google Scholar 

  • Entry JA, Sojka RE, Hicks BJ (2008) Carbon and nitrogen stable isotope ratios can estimate anionic polyacrylamide degradation in soil. Geoderma 145:8–16

    Article  CAS  Google Scholar 

  • EPA US (2010) Toxicological review of acrylamide in support of summary information on the integrated risk information systems (IRIS), U.S. Environmental Protection Agency

  • European Parliament (1999) Directive 1999/45/EC concerning the approximation of the laws, regulations and administrative provisions of the Member States relating to the classification, packaging and labelling of dangerous preparations. Official Journal of the European Union L200/1. European Union, Brussels

  • European Parliament (2006) Regulation 1907/2006/EC concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). Official Journal of the European Union L396/1. European Union, Brussels

  • European Union (2002). Risk assessment report on acrylamide. CAS no: 79-06-1 (http://europa.eu.int)

  • Fitzpatrick CSB, Fradin E, Gregory J (2004) Temperature effects on flocculation, using different coagulants. Water Sci Technol 50:171–175

    CAS  Google Scholar 

  • Giroto JA, Teixeira AC, Nascimento CA (2008) Photo-Fenton removal of water-soluble polymers. Chem Eng Process 47:2361–2369

    Article  CAS  Google Scholar 

  • Goodrich MS, Dulak LH, Friedman MA, Lech JJ (1991) Acute and long-term toxicity of water-soluble cationic polymers to rainbow-trout (Oncorhynchus-mykiss) and the modification of toxicity by humic-acid. Environ Toxicol Chem 10:509–515

    Article  CAS  Google Scholar 

  • Graveling GJ, Ragnarsdottir KV, Allen GC, Eastman J, Brady PV, Balsley SD, Skuse DR (1997) Controls on polyacrylamide adsorption to quartz, kaolinite, and feldspar. Geochimica Et Cosmochimica Acta 61:3515–3523

    Article  CAS  Google Scholar 

  • Greenlan DJ (1963) Adsorption of polyvinyl alcohols by montmorillonite. J Colloid Sci 18:647–664

    Article  Google Scholar 

  • Guezennec AG, Michel C, Desroche N, Togola A, Touzé S (Submitted 2014) Microbial aerobic and anaerobic degradation of acrylamide in sludges and industrial and natural waters—sand and gravel quarry case study. Environmental Science and Pollution Research (SI AQUAPOL)

  • Hamilton M, Reinert K, Freeman MB (1994) Aquatic risk assessment of polymers. Environ Sci Technol 28:187A–192A

    Article  Google Scholar 

  • Hanson AT, Cleasby JL (1990) The effect of temperature on turbulent flocculation—fluid-dynamics and chemistry. J AmWater Works Assoc 82:56–73

    CAS  Google Scholar 

  • Harford AJ, Hogan AC, Jones DR, van Dam RA (2011) Ecotoxicological assessment of a polyelectrolyte flocculant. Water Res 45:6393–6402

    Article  CAS  Google Scholar 

  • Haschke H, Miles MJ, Sheppard S (2002) Adsorption of individual polyacrylamide molecules studied by atomic force microscopy. Single Mol 3:171–172

    Article  CAS  Google Scholar 

  • Haveroen ME, MacKinnon MD, Fedorak PM (2005) Polyacrylamide added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters. Water Res 39:3333–3341

    Article  CAS  Google Scholar 

  • Heath AR, Bahri PA, Fawell PD, Farrow JB (2006) Polymer flocculation of calcite: experimental results from turbulent pipe flow. AIChE J 52:1284–1293

    Article  CAS  Google Scholar 

  • Hollander AF, Somasundaran P, Gryte CC (1981) Adsorption characteristics of polyacrylamide co-polymers on sodium kaolinite. J Appl Polym Sci 26:2123–2138

    Article  CAS  Google Scholar 

  • Holliman PJ, Clark JA, Williamson JC, Jones DL (2005) Model and field studies of the degradation of cross-linked polyacrylamide gels used during the revegetation of slate waste. Sci Total Environ 336:13–24

    Article  CAS  Google Scholar 

  • Inyang HI, Bae S (2005) Polyacrylamide sorption opportunity on interlayer and external pore surfaces of contaminant barrier clays. Chemosphere 58:19–31

    Article  CAS  Google Scholar 

  • Jin RR, Hu WB, Hou XJ (1987) Mechanism of selective flocculation of hematite from quartz with hydrolyzed polyacrylamide. Coll Surf 26:317–331

    Article  CAS  Google Scholar 

  • Junqua G, Spinelli S, Gonzalez C (2013) Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries. Environ Sci Pollut Res. doi:10.1007/s11356-014-3022-5

    Google Scholar 

  • Kay-Shoemake JL, Watwood ME, Lentz RD, Sojka RE (1998a) Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil Biol Biochem 30:1045–1052

    Article  CAS  Google Scholar 

  • Kay-Shoemake JL, Watwood ME, Sojka RE, Lentz RD (1998b) Polyacrylamide as a substrate for microbial amidase in culture and soil. Soil Biol Biochem 30:1647–1654

    Article  CAS  Google Scholar 

  • Kurenkov VF, Hartan HG, Lobanov FI (2002) Degradation of polyacrylamide and its derivatives in aqueous solutions. Russ J Appl Chem 75:1039–1050

    Article  CAS  Google Scholar 

  • Labahn SK, Fisher JC, Robleto EA, Young MH, Moser DP (2010) Microbially mediated aerobic and anaerobic degradation of acrylamide in a Western United States irrigation canal. J Environ Qual 39:1563–1569

    Article  CAS  Google Scholar 

  • Laird DA (1997) Bonding between polyacrylamide and clay mineral surfaces. Soil Sci 162:826–832

    Article  CAS  Google Scholar 

  • LaMer VK, Healvy TW (1963) Adsorption-flocculation reactions of macromolecules at the solid–liquid interface. Rev Pure Appl Chem 13:112–132

    CAS  Google Scholar 

  • Lande SS, Bosch SJ, Howard PH (1979) Degradation and leaching of acrylamide in soil. J Environ Qual 8:133–137

    Article  CAS  Google Scholar 

  • Lavrov KV, Zalunin IA, Kotlova EK, Yanenko AS (2010) A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides. Biochemistry (Mosc) 75:1006–1013

    Article  CAS  Google Scholar 

  • Lecourtier J, Lee LT, Chauveteau G (1990) Adsorption of polyacrylamide on siliceous minerals. Coll Surf 47:219–231

    Article  CAS  Google Scholar 

  • Lee JJ, Fuller GG (1985) Adsorption and desorption of flexible polymer-chains in flowing systems. J Colloid Interface Sci 103:569–577

    Article  CAS  Google Scholar 

  • Lee LT, Somasundaran P (1991) Effect of inorganic and organic additives on the adsorption of nonioninc polyacrylamide on hematite. J Colloid Interface Sci 142:470–479

    Article  CAS  Google Scholar 

  • Lentz RD, Sojka RE (2000) Applying polymers to irrigation water: evaluating strategies for furrow erosion control. Trans Asae 43:1561–1568

    Article  Google Scholar 

  • Lentz RD, Sojka RE, Mackey BE (2002) Fate and efficacy of polyacrylamide applied in furrow irrigation: full-advance and continuous treatments. J Environ Qual 31:661–670

    Article  CAS  Google Scholar 

  • Leong YK, Creasy DE, Boger DV, Nguyen QD (1987) Rheology of brown coal-water suspensions. Rheol Acta 26:291–300

    Article  CAS  Google Scholar 

  • Liber K, Weber L, Levesque C (2005) Sublethal toxicity of two wastewater treatment polymers to lake trout fry (Salvelinus namaycush). Chemosphere 61:1123–1133

    Article  CAS  Google Scholar 

  • Liu L, Wang Z, Lin K, Cai W (2012) Microbial degradation of polyacrylamide by aerobic granules. Environ Technol 33:1049–1054

    Article  CAS  Google Scholar 

  • Liu ZH, Cao YM, Zhou QW, Guo K, Ge F, Hou JY, Hu SY, Yuan S, Dai YJ (2013) Acrylamide biodegradation ability and plant growth-promoting properties of Variovorax boronicumulans CGMCC 4969. Biodegradation (in press)

  • Lu JH, Wu L, Letey J (2002) Effects of soil and water properties on anionic polyacrylamide sorption. Soil Sci Soc Am J 66:578–584

    Article  CAS  Google Scholar 

  • Lu JH, Wu LS (2013) Polyacrylamide distribution in columns of organic matter-removed soils following surface application. J Environ Qual 32:674–680

    Article  Google Scholar 

  • Lurie M, Rebhun M (1997) Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics. Water Sci Technol 36:93–101

    Article  CAS  Google Scholar 

  • Lyklema J, Fleer GJ (1987) Electrical contributions to the effect of macromolecules on colloid stability. Coll Surf 25:357–368

    Article  CAS  Google Scholar 

  • Ma Y, Yu H, Pan W, Liu C, Zhang S, Shen Z (2010) Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour Technol 101:285–291

    Article  CAS  Google Scholar 

  • McCollister DD, Oven F, Rowe VK (1964) Toxicology of acrylamide. Toxicol Appl Pharmacol 6:172–181

    Article  CAS  Google Scholar 

  • Makhongela HS, Glowacka AE, Agarkar VB, Sewell BT, Weber B, Cameron RA, Cowan DA, Burton SG (2007) A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity. Appl Microbiol Biotechnol 75:801–811

    Article  CAS  Google Scholar 

  • Malik M, Letey J (1991) Adsorption of polyacrylamide and polysaccharide polymers on soil materials. Soil Sci Soc Am J 55:380–383

    Article  CAS  Google Scholar 

  • Malik M, Nadler A, Letey J (1991) Mobility of polyacrylamide and polysaccharide polymer through soil materials. Soil Technol 4:255–263

    Article  Google Scholar 

  • Matsuoka H, Ishimura F, Takeda T, Hikuma M (2002) Isolation of polyacrylamide-degrading microorganisms from soil. Biotechnol Bioprocess Eng 7:327–330

    Article  CAS  Google Scholar 

  • Michaels AS, Morelos O (1955) Polyelectrolyte adsorption by kaolinite. Ind Eng Chem 47:1081–1809

    Google Scholar 

  • Molak V. Acrylamide: a review of the literature in NIOH and NIOSH basis for an occupational health standard. US Department of Health and Human Services, 1991

  • Mortland (1970) Clay-organic complexes and interactions. Adv Agron 22:75–117

    Article  CAS  Google Scholar 

  • Mpofu P, Addai-Mensah J, Ralston J (2004) Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions. J Colloid Interface Sci 27:145–156

    Article  CAS  Google Scholar 

  • Nabzar L, Pefferkorn E, Varoqui R (1984) Polyacrylamide sodium kaolinite interactions—flocculation behavior of polymer clay suspensions. J Colloid Interface Sci 102:380–388

    Article  CAS  Google Scholar 

  • Nabzar L, Pefferkorn E, Varoqui R (1988) Stability of polymer clay suspensions—the polyacrylamide sodium kaolinite system. Coll Surf 30:345–353

    Article  CAS  Google Scholar 

  • Nadler A, Letey J (1989) Adsorption-isotherms of polynions on soils using tritium labeled compounds. Soil Sci Soc Am J 53:1375–1378

    Article  CAS  Google Scholar 

  • Nadler A, Malik M, Letey J (1992) Desorption of polyacrylamide and polysaccharide polymers from soil materials. Soil Technol 5:91–95

    Article  Google Scholar 

  • Nagashiro W, Tsunoda T, Tanaka M, Oikawa M (1975) Degradation of polyacrylamide molecules in aqueous-solutions by high-speed strirring. Bull Chem Soc Jpn 48:2597–2598

    Article  CAS  Google Scholar 

  • Nakamiya K, Kinoshita S (1995) Isolation of polyacrylamide-degrading bacteria. J Ferment Bioeng 80:418–420

    Article  CAS  Google Scholar 

  • Nawaz MS, Franklin W, Cerniglia CE (1993) Degradation of acrylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia. Can J Microbiol 39:207–212

    Article  CAS  Google Scholar 

  • Nawaz MS, Khan AA, Seng JE, Leakey JE, Siitonen PH, Cerniglia CE (1994) Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Appl Environ Microbiol 60:3343–3348

    CAS  Google Scholar 

  • Nawaz MS, Khan AA, Bhattacharayya D, Siitonen PH, Cerniglia CE (1996) Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol 178:2397–2401

    CAS  Google Scholar 

  • Nawaz MS, Billedeau SM, Cerniglia CE (1998) Influence of selected physical parameters on the biodegradation of acrylamide by immobilized cells of Rhodococcus sp. Biodegradation 9:381–387

    Article  CAS  Google Scholar 

  • Nguyen QD, Boger DV (1985) Thixotropic behaviour of concentrated bauxite residue suspensions. Rheol Acta 24:427–437

    Article  CAS  Google Scholar 

  • Nguyen QD, Boger DV (1998) Application of rheology to solving tailings disposal problems. Int J Miner Process 54:217–233

    Article  CAS  Google Scholar 

  • Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M (2010) Structure and characterization of amidase from Rhodococcus sp. N-771: insight into the molecular mechanism of substrate recognition. Biochim Biophys Acta 1804:184–192

    Article  CAS  Google Scholar 

  • Parfitt RL, Greenland JD (1970) Adsorption of polysaccharides by montmorillonite. Soil Sci Soc Am J 34:562–866

    Article  Google Scholar 

  • Paterson RW, Abernathy FH (1970) Turbulent flow drag reduction and degradation with dilute polymer solutions. J Fluid Mech 43:689–710

    Article  CAS  Google Scholar 

  • Pefferkorn E, Nabzar L, Varoqui R (1987) Polyacrylamide Na-kaolinite interactions—effect of electrolyte concentration on polymer adsorption. Colloid Polym Sci 265:889–896

    Article  CAS  Google Scholar 

  • Pereira AS, Soares EJ (2012) Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device. J Non Newtonian Fluid Mech 179–180:9–22

    Article  CAS  Google Scholar 

  • Potts JR, Clarke PH (1976) The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa. J Gen Microbiol 93:377–387

    Article  CAS  Google Scholar 

  • Povkh LI, Chernyuk VV (1986) An experimental investigation of the effect of a polyacrylamide additive on the pressure drop in an expansion. J Eng Phys 51:1001–1004

    Article  Google Scholar 

  • Pradip YAA, Fuerstenau DW (1980) The adsorption of polyacrylamide flocculants on apaties. Colloid Polym Sci 258:1343–1353

    Article  CAS  Google Scholar 

  • Rabek JF (1996) Photodegradation of polymers: physical characteristics and applications. Springer, Berlin

    Book  Google Scholar 

  • Rasteiro MG, Garcia FAP, Ferreira P, Blanco A, Negro C, Antunes E (2008) Evaluation of flocs resistance and reflocculation capacity using the LDS technique. Powder Technol 183:231–238

    Article  CAS  Google Scholar 

  • Ren G-M, D-Z S, Chung Jong S (2006) Kinetics study on photochemical oxidation of polyacrylamide by ozone combined with hydrogen peroxide and ultraviolet radiation. J Environ Sci Chin 18:660–664

    Article  CAS  Google Scholar 

  • Rho T, Park J, Kim C, Yoon HK, Suh HS (1996) Degradation of polyacrylamide in dilute solution. Polym Degrad Stab 51:287–293

    Article  CAS  Google Scholar 

  • Ruehrwein RA, Ward DW (1952) Mechanism of clay aggregation by polyelectrolytes. Soil Sci 73:485–492

    Article  CAS  Google Scholar 

  • Santoshkumar M, Nayak AS, Anjaneya O, Karegoudar TB (2010) A plate method for screening of bacteria capable of degrading aliphatic nitriles. J Ind Microbiol Biotechnol 37:111–115

    Article  CAS  Google Scholar 

  • Sathesh Prabu C, Thatheyus AJ (2007) Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. Int Biodeterior Biodegrad 60:69–73

    Article  CAS  Google Scholar 

  • Sato T, Ruch R (1980) Stabilization of colloidal dispersions by polymer adsorption. In: Dekker (ed) Surfactant science series. Marcel Dekker Inc, New York

    Google Scholar 

  • Scott JP, Fawell PD, Ralph DE, Farrow JB (1996) The shear degradation of high-molecular-weight flocculant solutions. J Appl Polym Sci 62:2097–2016

    Article  CAS  Google Scholar 

  • Senden TJ, Di Meglio JM, Silberzan I (2000) The conformation of adsorbed polyacrylamide and derived polymers. Comptes Rendus De L Acad Des Sci Serie Iv Physique Astrophys 1:1143–1152

    CAS  Google Scholar 

  • Seybold CA (1994) Polyacrylamide review: soil conditioning and environmental fate. Commun Soil Sci Plant Anal 25:2171–2185

    Article  CAS  Google Scholar 

  • Shanker R, Ramakrishna C, Seth PK (1990) Microbial degradation of acrylamide monomer. Arch Microbiol 154:192–198

    Article  CAS  Google Scholar 

  • Sharma M, Sharma N, Bhalla T (2009) Amidases: versatile enzymes in nature. Rev Environ Sci Biotechnol 8:343–366

    Article  CAS  Google Scholar 

  • Shukor MY, Gusmanizar N, Azmi NA et al (2009a) Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Environ Biol 30(1):57–64

    CAS  Google Scholar 

  • Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA (2009b) Isolation and characterization of an acrylamide-degrading Antarctic bacterium. J Environ Biol 30:107–112

    CAS  Google Scholar 

  • Smith EA, Oehme FW (1993) Rapid direct analysis of acrylamide residue in polyacrylamide thickening agents by HPLC. J Chromatogr Sci 31:192–195

    Article  CAS  Google Scholar 

  • Smith EA, Prues SL, Oehme FW (1996) Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions. Temp Light pH Ecotoxicol Environ Safe 35:121–135

    Article  CAS  Google Scholar 

  • Smith EA, Prues SL, Oehme FW (1997) Environmental degradation of polyacrylamides. 2. Effects of environmental (outdoor) exposure. Ecotoxicol Environ Saf 37:76–91

    Article  CAS  Google Scholar 

  • Sojka RE, Entry JA (2000) Influence of polyacrylamide application to soil on movement of microorganisms in runoff water. Environ Pollut 108:405–412

    Article  CAS  Google Scholar 

  • Sojka RE, Bjorneberg DL, Entry JA, Lentz RD, Orts WJ (2007) Polyacrylamide in agriculture and environmental land management. Adv Agron 92:75–162

    Article  CAS  Google Scholar 

  • Spicer PT, Pratsinis SE, Raper J, Amal R, Bushell G, Meesters G (1998) Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol 97:26–34

    Article  CAS  Google Scholar 

  • Spofford TL, Pfeiffer KL (1996) Agricultural irrigation polyacrylamide application standard, managing irrigation-induced erosion and infiltration with polyacrylamide. College of Southern Idaho, Twin Falls

    Google Scholar 

  • Stephens SH (1991) Final report on the safety of polyacrylamide. J Am Coll Toxicol 10:193–202

    Article  Google Scholar 

  • Stutzmann T, Siffert B (1977) Contribution to adsorption mechanism of acetamide and polyacrylamide on to clays. Clay Clay Miner 25:392–406

    Article  CAS  Google Scholar 

  • Suzuki K, Sugiyama A, Nakazato K (1978) Study of acrylamide-gel chromatography 3 spherical gels of polyacrylamide imdized by heat-treatment. Nippon Kagaku Kaishi 1385–1389

  • Suzuki K, Nakazato K, Takasaki T (1979) Study of acrylamide-gel chromatography 4 spherical gels of polyacrylamide co-polymerized with acrylonitrile. Nippon Kagaku Kaishi 1327–1331

  • Syed MA, Ahmad SA, Kusnin N, Shukor MY (2012) Purification and characterization of amidase from acrylamide-degrading bacterium Burkholderia sp. strain DR.Y27. Afr J Biotechnol 11:329–336

    CAS  Google Scholar 

  • Tanaka H, Odberg L, Wagberg L, Lindstrom T (1990) Adsorption of cationic polyacrylamide onto monodisperses polystyrene lattices and cellulose fiber—effect of molecular-weight and charge-density of cationic polyacrylamides. J Colloid Interface Sci 13:219–228

    Article  Google Scholar 

  • Tang S, Ma Y, Shiu C (2001) Modeling the mechanical strength of fractal aggregates. Coll Surf Physicochem Eng Asp 180:7–16

    Article  CAS  Google Scholar 

  • Taylor ML, Morris GE, Self PG, Smart RS (2002) Kinetics of adsorption of high molecular weight anionic polyacrylamide onto kaolinite: the flocculation process. J Colloid Interface Sci 250:28–36

    Article  CAS  Google Scholar 

  • Tekin N, Demirbas O, Alkan M (2005) Adsorption of cationic polyacrylamide onto kaolinite. Microporous Mesoporous Mater 85:340–350

    Article  CAS  Google Scholar 

  • Tekin N, Dincer A, Demirbas O, Alkan M (2006) Adsorption of cationic polyacrylamide onto sepiolite. J Hazard Mater 134:211–219

    Article  CAS  Google Scholar 

  • Tekin N, Dincer A, Demirbas O, Alkan M (2010) Adsorption of cationic polyacrylamide (C-PAM) on expanded perlite. Appl Clay Sci 50:125–129

    Article  CAS  Google Scholar 

  • Thanyacharoen U, Tani A, Charoenpanich J (2012) Isolation and characterization of Kluyvera georgiana strain with the potential for acrylamide biodegradation. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1491–1499

    Article  CAS  Google Scholar 

  • Theng BKG (1979) Formation and properties of clay-polymer complexes. Develop Soil Sci 9:9–11

    Google Scholar 

  • Theng BKG (1982) Clay-polymer interactions—summary and perspectives. Clay Clay Miner 30:1–10

    Article  CAS  Google Scholar 

  • Togola A, Coureau C, Guezennec AG, Touzé S (Submitted 2014) A sensitive analytical procedure for acrylamide in environmental water samples by offline SPE-UPLC/MS/MS. Environ Sci Pollut Res (SI AQUAPOL)

  • Touzé S, Guerin V, Guezennec AG, Binet S, Togola A (2014) Dissemination of acrylamide monomer from polyacrylamide based flocculant use—sand and gravel quarry case study. Environ Sci Pollut Res (SI AQUAPOL)

  • UNPG (2013) Polyacrylamide based flocculant used in quarries (in French). Union National des Producteurs de Granulats UNPG

  • Van de Ven TGM (1994) Kinetic aspects of polymer and polelectrolyte adsorption on surfaces. Adv Colloid Interf Sci 48:121–140

    Article  Google Scholar 

  • Ver Vers LM (1999) Determination of acrylamide monomer in polyacrylamide degradation studies by high-performance liquid chromatography. J Chromatogr Sci 37:486–494

    Article  CAS  Google Scholar 

  • Vlachogiannis M, Liberatore MW, McHugh AJ, Hanratty TJ (2003) Effectiveness of a drag reducing polymer: relation to molecular weight distribution and structuring. Phys Fluids 15:3786–3794

    Article  CAS  Google Scholar 

  • Wade JHT, Kumar P (1972) Electronic microscope studies of polymer degradation. J. Hydronaut. 6–40

  • Wakaizumi M, Yamamoto H, Fujimoto N, Ozeki K (2009) Acrylamide degradation by filamentous fungi used in food and beverage industries. J Biosci Bioeng 108:391–393

    Article  CAS  Google Scholar 

  • Wampler DA, Ensign SA (2005) Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris. Appl Environ Microbiol 7:5850–5857

    Article  CAS  Google Scholar 

  • Weideborg M, Kallqvist T, Odegard KE, Sverdrup LE, Vik EA (2001) Environmental risk assessment of acrylamide and methylolacrylamide from a grouting agent used in the tunnel construction of Romeriksporten, Norway. Water Res 35:2645–2652

    Article  CAS  Google Scholar 

  • Wen Q, Chen Z, Zhao Y, Zhang H, Feng Y (2010) Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. J Hazard Mater 175:955–959

    Article  CAS  Google Scholar 

  • Wilson S, Drew R (1991) Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product. J Bacteriol 173:4914–4921

    CAS  Google Scholar 

  • Wilson SA, Wachira SJ, Drew RE, Jones D, Pearl LH (1993) Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein. Embo J 12:3637–3642

    CAS  Google Scholar 

  • Wilson SA, Drew RE (1995) Transcriptional analysis of the amidase operon from Pseudomonas aeruginosa. J Bacteriol 177:3052–3057

    CAS  Google Scholar 

  • World Health Organization (1985) Environmental Health Criteria 1985, 49, 1. International programme on chemical safety Web. http://www.inchem.org/documents/ehc/ehc/ehc49.htm

  • Woodrow JE, Seiber JN, Miller GC (2008) Acrylamide release resulting from sunlight irradiation of aqueous polyacrylamide/iron mixtures. J Agric Food Chem 56:2773–2779

    Article  CAS  Google Scholar 

  • Yamada H, Asano Y, Hino T, Tani Y (1979) Microbial utilization of acrylonitrile. J Ferment Technol 5:8–14

    Google Scholar 

  • Yeung A, Gibbs A, Pelton R (1997) Effect of shear on the strength of polymer-induced flocs. J Colloid Interface Sci 196:113–115

    Article  Google Scholar 

  • Yeung AKC, Pelton R (1996) Micromechanics: a new approach to studying the strength and breakup of flocs. J Colloid Interface Sci 184:579–585

    Article  CAS  Google Scholar 

  • Young MH, Tappen JJ, Miller GC, Carroll S, Susfalk RB (2007) Risk characterization: using linear anionic polyacrylamide to reduce water seepage from unlined water delivery canal systems. Publication no. 41226. Desert Research Institute, Las Vegas

    Google Scholar 

Download references

Acknowledgments

The research leading to this publication has received funding from the ANR in the framework of AquaPOL project (CES program, project no. 1443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Guezennec.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guezennec, A.G., Michel, C., Bru, K. et al. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res 22, 6390–6406 (2015). https://doi.org/10.1007/s11356-014-3556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3556-6

Keywords

Navigation