Skip to main content
Log in

Transformation of anthracene on various cation-modified clay minerals

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe–smectite >> Cu–smectite > Al–smectite ≈ Ca–smectite ≈ Mg–smectite ≈ Na–smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)–smectite exhibits the highest catalytic activity followed by Fe(III)–illite, Fe(III)–pyrophyllite, and Fe(III)–kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo F, Pizzul L, Castillo MP, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219

    Article  CAS  Google Scholar 

  • Allen BL, Hajek BF (1989) Mineral occurrence in soil environments. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd ed. Soil Science Society of America, Madison, p 199–278

  • Arroyo LJ, Li H, Teppen JB, Boyd AS (2005) A simple method for partial purification of reference clays. Clay Clay Miner 53:511–519

    Article  CAS  Google Scholar 

  • Bladel RV, Moreale A (1974) Adsorption of fenuron and monuron (substituted ureas) by two montmorillonite clays. Soil Sci Soc Am J 38:244–249

    Article  Google Scholar 

  • Brown DR, Rhodes CN (1997) Brønsted and Lewis acid catalysis with ion-exchanged clays. Catal Lett 45:35–40

    Article  CAS  Google Scholar 

  • Charles M, Flynn JR (1984) Hydrolysis of inorganic iron(III) salts. Chem Rev 84:31–41

    Article  Google Scholar 

  • Clarke C, Tourney J, Johnson K (2012) Oxidation of anthracene using waste Mn oxide minerals: the importance of wetting and drying sequences. J Hazard Mater 205–206:126–130

    Article  Google Scholar 

  • Cordeiro SD, Corio P (2009) Electrochemical and photocatalytic reactions of polycyclic aromatic hydrocarbons investigated by Raman spectroscopy. J Braz Chem Soc 20:80–87

    Article  CAS  Google Scholar 

  • dela Cruz AL, Gehling W, Lomnicki S, Cook R, Dellinger B (2011) Detection of environmentally persistent free radicals at a superfund wood treating site. Environ Sci Technol 45:6356–6365

    Article  CAS  Google Scholar 

  • Ebitani K, Ide M, Mitsudome T, Mizugaki T, Kaneda K (2002) Creation of a chain-like cationic iron species in montmorillonite as a highly active heterogeneous catalyst for alkane oxygenations using hydrogen peroxide. Chem Commun 7:690–691

    Article  Google Scholar 

  • Elsner M, Schwarzenbach RP, Haderlein SB (2004) Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ Sci Technol 38(3):799–807

    Article  CAS  Google Scholar 

  • Fenn DB, Mortland MM, Pinnavaia TJ (1973) The chemisorption of anisole on Cu(II) hectorite. Clay Clay Miner 21:315–322

    Article  CAS  Google Scholar 

  • Field JA, Jong E, Costa GF, Bont JAD (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • González-Bahamón LF, Hoyos DF, Benítez N, Pulgarín C (2011) New Fe-immobilized natural bentonite plate used as photo-Fenton catalyst for organic pollutant degradation. Chemosphere 82:1185–1189

    Article  Google Scholar 

  • Gu C, Li H, Teppen BJ, Boyd SA (2008) Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay. Environ Sci Technol 42:4758–4763

    Article  CAS  Google Scholar 

  • Gu C, Liu C, Johnston CT, Teppen BJ, Li H, Boyd SA (2011a) Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies. Environ Sci Technol 45:1399–1406

    Article  CAS  Google Scholar 

  • Gu C, Liu C, Ding Y, Li H, Teppen BJ, Johnston CT, Boyd SA (2011b) Clay mediated route to natural formation of Polychlorodibenzo-p-dioxins. Environ Sci Technol 45:3445–3451

    Article  CAS  Google Scholar 

  • Hundal LS, Thompson ML, Laird DA, Carmo AM (2001) Sorption of phenanthrene by reference smectites. Environ Sci Technol 35:3456–3461

    Article  CAS  Google Scholar 

  • Hwang S, Cutright TJ (2002) Impact of clay minerals and DOM on the competitive sorption/desorption of PAHs. Soil Sediment Contam 11:269–291

    Article  CAS  Google Scholar 

  • Isaacson PJ, Sawhney BL (1983) Sorption and transformation of phenols on clay surfaces: effect of exchangeable cations. Clay Miner 18:253–265

    Article  CAS  Google Scholar 

  • Jia HZ, Zhao JC, Fan XY, Dilimulati K, Wang CY (2012) Photodegradation of phenanthrene on cation-modified clays under visible light. Appl Catal B Environ 123–124:43–51

    Article  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegr 45:57–88

    Article  CAS  Google Scholar 

  • Li XJ, Lin X, Zhang CG, Li Q, Gong ZQ (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150:21–26

    Article  CAS  Google Scholar 

  • Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert IB, Oberg L, Haglund P, Tysklind M (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36:475–485

    Article  CAS  Google Scholar 

  • Manjanna J, Kozaki T, Sato S (2009) Fe(III)-montmorillonite: basic properties and diffusion of tracers relevant to alteration of bentonite in deep geological disposal. Appl Clay Sci 43:208–217

    Article  CAS  Google Scholar 

  • Mortland MM, Halloran LJ (1976) Polymerization of aromatic molecules on smectite. Soil Sci Soc Am J 40:367–370

    Article  CAS  Google Scholar 

  • Motokura K, Matsunaga S, Noda H, Miyaji A, Baba T (2012) Water-accelerated allylsilylation of alkenes using a proton-exchanged montmorillonite catalyst. ACS Catal 2:1942–1946

    Article  CAS  Google Scholar 

  • Müller S, Totsche KU, Kögel-Knabner I (2007) Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. Eur J Soil Sci 58:918–931

    Article  Google Scholar 

  • Niederer M (1998) Determination of polycyclic aromatic hydrocarbons and substitutes (nitro-, oxy-PAHs) in urban soil and airborne particulate by GC-MS and NCI-MS/MS. Environ Sci Pollut Res 5:209–216

    Article  CAS  Google Scholar 

  • Pinnavaia TJ, Hall PL, Cady SC, Mortland MM (1974) Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J Phys Chem 78:994–999

    Article  CAS  Google Scholar 

  • Pusino A, Liu W, Gessa C (1993) Dimepiperate adsorption and hydrolysis on Al3+-montmorillonite, Fe3+-montmorillonite, Ca2+-montmorillonite, and Na+-montmorillonite. Clay Clay Miner 41:335–340

    Article  CAS  Google Scholar 

  • Richard ZG, Kamens M, Fulcher JN, Bell DA (1988) The influence of humidity, sunlight, and temperature on the daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. Environ Sci Technol 22:103–108

    Article  Google Scholar 

  • Rupert JP (1973) Electron spin resonance spectra of interlamellar copper(II)-arene complexes on montmorillonite. J Phys Chem 77:784–790

    Article  CAS  Google Scholar 

  • Samanta KS, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  Google Scholar 

  • Sato T, Watanabe T, Otsuka R (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clay Clay Miner 40:103–113

    Article  CAS  Google Scholar 

  • Soma Y, Soma M (1985) Reactions of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonite studied by resonance Raman spectroscopy. 2. Monosubstituted benzenes and 4,4′-disubstltuted biphenyls. J Phys Chem 89:738–742

    Article  CAS  Google Scholar 

  • Soma Y, Soma M (1989) Chemical reactions of organic compounds on clay surfaces. Environ Health Perspect 83:205–214

    Article  CAS  Google Scholar 

  • Wang C, Ding Y, Teppen BJ, Boyd SA, Song C, Li H (2009) Role of interlayer hydration in lincomycin sorption by smectite clays. Environ Sci Technol 43:6171–6176

    Article  CAS  Google Scholar 

  • Wei GT, Fan CY, Zhang LY, Ye RC, Wei TY, Tong ZF (2012) Photo-Fenton degradation of methyl orange using H3PW12O40 supported Fe-bentonite catalyst. Catal Commun 17:184–188

    Article  CAS  Google Scholar 

  • Wilckea W, Bandowe BA, Lueso MG, Ruppenthal M, del Valle H, Oelmann Y (2014) Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina. Sci Total Environ 473–474:317–325

    Article  Google Scholar 

  • Zhu DQ, Herbert BE, Schlautman MA, Carraway ER, Hur J (2004) Cation-π bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces. J Environ Qual 33:1322–1330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the National Natural Science Foundation of China (Grant No. 41301543 and 21173261), the “One Hundred Talents” program of the Chinese Academy of Sciences, International Science & Technology Cooperation Program of Xinjiang Uygur Autonomous Region, China, (20126017), the Chinese Academy of Sciences (CAS) “Cross-Cooperation Program” for Creative Research Teams, the CAS “Western Action Plan” (KGZD-EW-502), the “Western Light Western Doctor” Program of the Chinese Academy of Sciences (XBBS201112), the “Open Project” of the State Key Laboratory of Pollution Control and Resource Reuse (PCRRF12020), and the “Western Light Joint Scholar” program of the Chinese Academy of Sciences (LHXZ201001) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanzhong Jia or Chuanyi Wang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jia, H., Li, X. et al. Transformation of anthracene on various cation-modified clay minerals. Environ Sci Pollut Res 22, 1261–1269 (2015). https://doi.org/10.1007/s11356-014-3424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3424-4

Keywords

Navigation