Skip to main content
Log in

Experimental Analysis of the Shot Peening Particle Stream Using Particle Tracking and Digital Image Correlation Techniques

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The conventional air pressure shot peening process consists of multiple impacts of particles propelled with pressurized air through a nozzle at the surface of mechanical components. An experimental study of the flow of particles exiting the nozzle was conducted. A high speed camera was used for image acquisition of the particle flow. This particle flow was analyzed using a particle tracking (PT) technique and using a digital image correlation (DIC) technique. Those two methods were compared and applied to the characterization of an industrial shot peening flow with several parameters of jet pressure and mass flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shakouchi T (2004) Jet flow engineering –fundamentals and application. Morikita

  2. Kato Y, Omiya M, Hoshino H (2014) Modelling of particle behaviour in shot peening process. Journal of Mechanical Engineering and Automation 4(3):83–91

    Google Scholar 

  3. Tsuji Y, Morikawa Y, Tanaka T, Karimine K, Nishida S (1988) Measurement of an axisymmetric jet laden with coarse particles. Int J Multiphase Flow 14(5):565–574

    Article  Google Scholar 

  4. Green RG, Gregory IA, Henry RM, Hill EJ (1986) Measurement of shot velocity at the nozzle of a shot-peening machine. In: Proceedings of 2nd int conf on impact treatment processes. cited By 5, pp 221–228

  5. Beck MS, Green RG, Plaskowski AB, Stott AL (1990) Capacitance measurement applied to a pneumatic conveyor with very low solids loading. Measurement Sci Technol 1(7):561–564. https://doi.org/10.1088%252F0957-0233%252F1%252F7%252F004

    Article  Google Scholar 

  6. Ma J, Yan Y (2000) Design and evaluation of electrostatic sensors for the measurement of velocity of pneumatically conveyed solids. Flow Measurement and Instrumentation 11(3):195–204. http://www.sciencedirect.com/science/article/pii/S0955598600000194

    Article  Google Scholar 

  7. Yan Y, Byrne B, Woodhead S, Coulthard J (1995) Velocity measurement of pneumatically conveyed solids using electrodynamic sensors. Measurement Sci Technol 6(5):515–537. https://doi.org/10.1088%252F0957-0233%252F6%252F5%252F013

    Article  Google Scholar 

  8. Hribernik A, Bombek G, Markočič I (2003) Velocity measurements in a shotblasting machine. Flow Measurement and Instrumentation 14(6):225–231. http://www.sciencedirect.com/science/article/pii/S0955598603000414

    Article  Google Scholar 

  9. Hribernik A, Bombek G (2006) Improved method for shot particle velocity measurement within a shotblasting chamber. Flow Measurement and Instrumentation 17(2):99–105. http://www.sciencedirect.com/science/article/pii/S0955598605000956

    Article  Google Scholar 

  10. Albrecht HE, Borys M, Damaschke N, Tropea C (2003) Laser doppler and phase doppler measurement techniques. Springer, Berlin

    Book  Google Scholar 

  11. Angelou N, Zhang X, Sjöholm M, Lorentzen L, Huang X (2017) Shot peening speed measurements using lidar technology. DTU Wind Energy. DTU Wind Energy E 151

  12. Santo N, Portnikov D, Eshel I, Taranto R, Kalman H (2018) Experimental study on particle steady state velocity distribution in horizontal dilute phase pneumatic conveying. Chem Eng Sci 187:354–366. http://www.sciencedirect.com/science/article/pii/S0009250918302720

    Article  Google Scholar 

  13. Aiba Y, Omiya M, Murai K, Komotori J (2014) Observation of particle behavior in fine particle peening process. In: Conf proc 2014: ICSP-12 Goslar, Germany, pp 445–449

  14. Lau TCW, Nathan GJ (2016) The effect of stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet. J Fluid Mech 809:72–110

    Article  MathSciNet  MATH  Google Scholar 

  15. Prevost F, Boree J, Nuglisch HJ, Charnay G (1996) Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Int J Multiphase Flow 22(4):685–701. http://www.sciencedirect.com/science/article/pii/0301932296000092

    Article  MATH  Google Scholar 

  16. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4). https://doi.org/10.1145/1177352.1177355

  17. Rosales R, Sclaroff S (1999) 3d trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 117–123

  18. Meyer M, Caruso F, Lupoi R (2018) Particle velocity and dispersion of high stokes number particles by PTV measurements inside a transparent supersonic cold spray nozzle. Int J Multiphase Flow 106:296–310. http://www.sciencedirect.com/science/article/pii/S0301932217304184

    Article  Google Scholar 

  19. Amiot F, Bornert M, Doumalin P, Dupré JC, Fazzini M, Orteu JJ, Poilâne C, Robert L, Rotinat R, Toussaint E, Wattrisse B, Wienin JS (2013) Assessment of digital image correlation measurement accuracy in the ultimate error regime: Main results of a collaborative benchmark. Strain 49(6):483–496. https://onlinelibrary.wiley.com/doi/abs/10.1111/str.12054

    Article  Google Scholar 

  20. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties – a review. Strain 42(2):69–80. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-1305.2006.00258.x

    Article  Google Scholar 

  21. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media

  22. Passieux J-C, Navarro P, Périé J-N, Marguet S, Ferrero J-F (2014) A digital image correlation method for tracking planar motions of rigid spheres: Application to medium velocity impacts. Experimental Mech 54(8):1453–1466. https://doi.org/10.1007/s11340-014-9930-y

    Article  Google Scholar 

  23. Horn BK, Schunck P, Brian G (1981) Determining optical flow. Artificial Intelligence 17(1):185–203. http://www.sciencedirect.com/science/article/pii/0004370281900242

    Article  Google Scholar 

  24. Kuo J-C, Tung S-H, Shih M-H, Sung W-P, Kuo T-Y, Wu C-H, Hwang W-S (2014) Applying digital image correlation method to measure flow field. Int J Civil Eng 12:368–373

    Google Scholar 

  25. Chien C-H, Su T-H, Huang C-J, Chao Y-J, Yeh W-L, Lam P-S (2019) Application of digital image correlation (DIC) to sloshing liquids. Optics and Lasers in Engineering 115:42–52. http://www.sciencedirect.com/science/article/pii/S0143816618311874

    Article  Google Scholar 

  26. Chatellier L, Jarny S, Gibouin F, David L (2013) A parametric PIV/DIC method for the measurement of free surface flows. Experiments in Fluids 54(3):1488. https://doi.org/10.1007/s00348-013-1488-4

    Article  Google Scholar 

  27. Zhao X, Sutton MA, Zhang H, Deng X, Reynolds AP, Ke X, Schreier HW (2015) Stereo image based motion measurements in fluids: experimental validation and application in friction extrusion. Experimental Mechanics 55(1):177–200. https://doi.org/10.1007/s11340-014-9907-x

    Article  Google Scholar 

  28. White FM (2008) Fluid mechanics, 6th edn. McGraw-Hill, New York

    Google Scholar 

  29. Badreddine J, Remy S, Micoulaut M, Rouhaud E, Desfontaine V, Renaud P (2014) CAD based model of ultrasonic shot peening for complex industrial parts. Adv Eng Softw (76):31–42

  30. Nguyen VB, Pohb HJ, Zhang YW (2014) Predicting shot peening coverage using multiphase computational fluid dynamics simulations. Powder Technol (256):100–112

  31. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. image Processing for Biologists http://www.sciencedirect.com/science/article/pii/S1046202316303346

    Article  Google Scholar 

  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9(7):676

    Article  Google Scholar 

  33. Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiphase Flow 40:1–18. http://www.sciencedirect.com/science/article/pii/S030193221100245X

    Article  Google Scholar 

  34. Blaber J, Adair B, Antoniou A (2015) Ncorr: Open-source 2D digital image correlation matlab software. Experimental Mech 55(6):1105–1122. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  35. Pan B (2009) Reliability-guided digital image correlation for image deformation measurement. Appl Opt 48 (8):1535–1542. http://ao.osa.org/abstract.cfm?URI=ao-48-8-1535

    Article  Google Scholar 

  36. Williams T, Kelley C et al (2019) Gnuplot 5.2: an interactive plotting program. http://gnuplot.sourceforge.net/

  37. Gallitelli D, Boyer V, Gelineau M, Colaitis Y, Rouhaud E, Retraint D, Kubler R, Desvignes M, Barrallier L (2016) Simulation of shot peening: from process parameters to residual stress fields in a structure. Comptes Rendus Mécanique 344(4):355–374. Computational simulation of manufacturing processes http://www.sciencedirect.com/science/article/pii/S1631072116000279

    Article  Google Scholar 

  38. Kubler RF, Berveiller S, Bouscaud D, Guiheux R, Patoor E, Puydt Q (2019) Shot peening of TRIP780 steel: experimental analysis and numerical simulation. J Materials Process Technol 270:182–194. http://www.sciencedirect.com/science/article/pii/S0924013619300871

    Article  Google Scholar 

  39. Boyer V (2017) Modélisation du grenaillage d’un alliage de nickel avec prise en compte de l’écrouissage et de la microstructure. Ph.D. Thesis, UT Troyes

Download references

Acknowledgments

This work was conducted with the help of the French Technological Research Institute for Materials, Metallurgy and Processes (IRT M2P). The authors would like to acknowledge IRT M2P and the partners of the project CONDOR led by IRT M2P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.F. Kubler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubler, R., Rotinat, R., Badreddine, J. et al. Experimental Analysis of the Shot Peening Particle Stream Using Particle Tracking and Digital Image Correlation Techniques. Exp Mech 60, 429–443 (2020). https://doi.org/10.1007/s11340-019-00574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00574-4

Keywords

Navigation