Skip to main content
Log in

Inverse Identification of Composite Material Properties by using a Two-Stage Fourier Method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This study presents a feasible identification method for composite materials that adopts the combined use of the Fourier method, a weighted least squares method and the mode shape error function. The deflection shape function of the plate structure is defined in terms of 2D Fourier cosine series which is supplemented with several one-dimensional additional terms to accommodate general boundary conditions. The derivatives of mode shape with respect to the flexural rigidity are derived and computed from the model’s displacement function. A difference exists in the means of obtaining the mode shape derivatives between the present approach and the commonly used finite element model updating method. This research proposes a two-stage identification approach, in which the natural frequency error function is utilised in stage 1. In stage 2, the mode shape error function is used, which is proven vital in improving the accuracy of the in-plane shear modulus and Poisson’s ratio by at most 13%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tam JH, Ong ZC, Ismail Z, Ang BC, Khoo SY (2017) Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review. Mech Adv Mater Struc 24(12):971–986. https://doi.org/10.1080/15376494.2016.1196798

    Article  Google Scholar 

  2. Low KH (2003) Natural frequencies of a beam-mass system in transverse vibration: Rayleigh estimation versus eigenanalysis solutions. Int J Mech Sci 45(6–7):981–993. https://doi.org/10.1016/j.ijmecsci.2003.09.009

    Article  MATH  Google Scholar 

  3. Cupial P (2006) Rayleigh's quotient of linear piezoelectricity and its use in the approximate calculation of the natural frequencies of piezoelectric continua. J Appl Mech-T Asme 73(2):189–196. https://doi.org/10.1115/1.2065667

    Article  MATH  Google Scholar 

  4. Mali KD, Singru PM (2015) Determination of modal constant for fundamental frequency of perforated plate by Rayleigh's method using experimental values of natural frequency. Int J Acoust Vib 20(3):177–184

    Google Scholar 

  5. Lee CR, Kam TY (2006) Identification of mechanical properties of elastically restrained laminated composite plates using vibration data. J Sound Vib 295(3–5):999–1016. https://doi.org/10.1016/j.jsv.2006.01.054

    Article  Google Scholar 

  6. Lee CR, Kam TY, Sun SJ (2007) Free-vibration analysis and material constants identification of laminated composite sandwich plates. J Eng Mech 133(8):874–886. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(874)

    Article  Google Scholar 

  7. Rebillat M, Boutillon X (2011) Measurement of relevant elastic and damping material properties in sandwich thick plates. J Sound Vib 330(25):6098–6121. https://doi.org/10.1016/j.jsv.2011.07.015

    Article  Google Scholar 

  8. Rahbar-Ranji A, Shahbaztabar A (2016) Free vibration analysis of moderately thick rectangular plates on Pasternak foundation with point supports and elastically restrained edges by using the Rayleigh-Ritz method. J Fail Anal Prev 16(6):1006–1023. https://doi.org/10.1007/s11668-016-0190-2

    Article  Google Scholar 

  9. Datta N, Thekinen JD (2016) A Rayleigh Ritz based approach to characterize the vertical vibration of non-uniform hull girder. Ocean Eng 125:113–123. https://doi.org/10.1016/j.oceaneng.2016.07.046

    Article  Google Scholar 

  10. Araújo AL, Mota Soares CM, Herskovits J, Pedersen P (2002) Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data. Compos Struct 58(3):307–318. https://doi.org/10.1016/S0263-8223(02)00192-7

    Article  Google Scholar 

  11. Lauwagie T, Sol H, Roebben G, Heylen W, Shi YM, Van der Biest O (2003) Mixed numerical-experimental identification of elastic properties of orthotropic metal plates. Ndt&E Int 36(7):487–495. https://doi.org/10.1016/j.jsv.2006.01.054

    Article  Google Scholar 

  12. Lauwagie T, Sol H, Heylen W, Roebben G (2004) Determination of the in-plane elastic properties of the different layers of laminated plates by means of vibration testing and model updating. J Sound Vib 274(3–5):529–546. https://doi.org/10.1016/j.jsv.2003.05.023

    Article  Google Scholar 

  13. Maletta C, Pagnotta L (2004) On the determination of mechanical properties of composite laminates using genetic algorithms. Int J Mech Mater Des 1(2):199–211. https://doi.org/10.1007/s10999-004-1731-5

    Article  Google Scholar 

  14. Garshasbinia N, Jam JE (2005) Identification of mechanical properties in laminated composite plates using genetic algorithm. Iran Polym J 14(1):39–46

    Google Scholar 

  15. Matter M, Gmur T, Cugnoni J, Schorderet A (2009) Numerical-experimental identification of the elastic and damping properties in composite plates. Compos Struct 90(2):180–187. https://doi.org/10.1016/j.compstruct.2009.03.001

    Article  Google Scholar 

  16. Hwang SF, Wu JC, Barkanovs E, Belevicius R (2010) Elastic constants of composite materials by an inverse determination method based on a hybrid genetic algorithm. J Mech 26(3):345–353. https://doi.org/10.1017/S1727719100003907

    Article  Google Scholar 

  17. Kong KK, Ong ZC, Khoo SY, Ismail Z, Ang BC, Chong WT, Noroozi S, Rahman AGA (2014) Identification of material properties of orthotropic composite plate using hybrid non-destructive evaluation approach. Mater Res Innov 18:423–428. https://doi.org/10.1179/1432891714Z.000000000991

    Google Scholar 

  18. Lahrmann A (1992) An Element Formulation for the Classical Finite-Difference and Finite Volume Method Applied to Arbitrarily Shaped Domains. Int J Numer Meth Eng 35(4):893–913. https://doi.org/10.1002/nme.1620350416

    Article  MATH  Google Scholar 

  19. Barbato M, Zona A, Conte JP (2007) Finite element response sensitivity analysis using three-field mixed formulation: General theory and application to frame structures. Int J Numer Meth Eng 69(1):114–161. https://doi.org/10.1002/nme.1759

    Article  MATH  Google Scholar 

  20. Yang W, Kim B, Cho S, Park J (2017) Experimental Method to Evaluate Effective Dynamic Properties of a Meta-Structure for Flexural Vibrations. Exp Mech 57(3):417–425. https://doi.org/10.1007/s11340-016-0242-2

    Article  Google Scholar 

  21. Siddiqui MZ, Khan SZ, Khan MA, Shahzad M, Khan KA, Nisar S, Noman D (2017) A Projected Finite Element Update Method for Inverse Identification of Material Constitutive Parameters in transversely Isotropic Laminates. Exp Mech 57(5):755–772. https://doi.org/10.1007/s11340-017-0269-z

    Article  Google Scholar 

  22. Hong CC, Liao HW, Jane KC (2006) Numerical analyses of piezoelectric materials with the GDQ method. Comput Mater Sci 35(4):391–398. https://doi.org/10.1016/j.commatsci.2004.11.007

    Article  Google Scholar 

  23. Bacciocchi M, Eisenberger M, Fantuzzi N, Tornabene F, Viola E (2016) Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method. Compos Struct 156:218–237. https://doi.org/10.1016/j.compstruct.2015.12.004

    Article  Google Scholar 

  24. Ghadiri M, Shafiei N (2016) Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method. Microsyst Technol 22(12):2853–2867. https://doi.org/10.1007/s00542-015-2662-9

    Article  Google Scholar 

  25. Si WJ, Li CX, Gong SW, Yong LK (2008) Spline-discretization-based free vibration analysis for orthotropic plates. J Eng Mech-Asce 134(5):405–416. https://doi.org/10.1061/(Asce)0733-9399(2008)134:5(405)

    Article  Google Scholar 

  26. Carminelli A, Catania G (2007) Dynamical analysis of shell structures by means of B-spline shape functions. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol 1: 21st Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C, ASME, Las Vegas, pp 385–392. https://doi.org/10.1115/DETC2007-34759

  27. Liu YN, Sun L, Liu YH, Cen ZZ (2011) Multi-scale B-spline method for 2-D elastic problems. Appl Math Model 35(8):3685–3697. https://doi.org/10.1016/j.apm.2011.01.043

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu C, Xiang H, Du XP (2016) Improved three-variable element-free Galerkin method for vibration analysis of beam-column models. J Mech Sci Technol 30(9):4121–4131. https://doi.org/10.1007/s12206-016-0824-z

    Article  Google Scholar 

  29. Palmeri A, Ntotsios E (2016) Transverse vibrations of viscoelastic Sandwich beams via Galerkin-based state-space approach. J Eng Mech 142(7). https://doi.org/10.1061/(Asce)Em.1943-7889.0001069

  30. Papkov SO (2016) A new method for analytical solution of inplane free vibration of rectangular orthotropic plates based on the analysis of infinite systems. J Sound Vib 369:228–245. https://doi.org/10.1016/j.jsv.2016.01.025

    Article  Google Scholar 

  31. Cho DS, Kim BH, Kim JH, Vladimir N, Choi TM (2016) Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries. Int J Nav Arch Ocean 8(2):117–126. https://doi.org/10.1016/j.ijnaoe.2015.06.001

    Article  Google Scholar 

  32. Li WL (2004) Vibration analysis of rectangular plates with general elastic boundary supports. J Sound Vib 273(3):619–635. https://doi.org/10.1016/S0022-460x(03)00452-5

    Article  Google Scholar 

  33. Khov H, Li WL, Gibson RF (2009) An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions. Compos Struct 90(4):474–481. https://doi.org/10.1016/j.compstruct.2009.04.020

    Article  Google Scholar 

  34. Ismail Z, Khov H, Li WL (2013) Determination of material properties of orthotropic plates with general boundary conditions using Inverse method and Fourier series. Measurement 46(3):1169–1177. https://doi.org/10.1016/j.measurement.2012.11.005

    Article  Google Scholar 

  35. Silva MFT, Borges LMSA, Rochinha FA, de Carvalho LAV (2004) A genetic algorithm applied to composite elastic parameters identification. Inverse Problems in Science and Engineering 12(1):17–28. https://doi.org/10.1080/1068276031000097992

    Article  Google Scholar 

  36. Ragauskas P, Belevičius R (2009) Identification of material properties of composite materials. Aviation 13(4):109–115. https://doi.org/10.3846/1648-7788.2009.13.109-115

    Article  Google Scholar 

  37. Hwang SF, Wu JC, He RS (2009) Identification of effective elastic constants of composite plates based on a hybrid genetic algorithm. Compos Struct 90(2):217–224. https://doi.org/10.1016/j.compstruct.2009.03.021

    Article  Google Scholar 

  38. Cugnoni J, Gmur T, Schorderet A (2007) Inverse method based on modal analysis for characterizing the constitutive properties of thick composite plates. Comput Struct 85(17–18):1310–1320. https://doi.org/10.1016/j.compstruc.2006.08.090

    Article  Google Scholar 

  39. Matter M, Gmur T, Cugnoni J, Schorderet A (2007) Improved modal characterization of the constitutive parameters in multilayered plates. Compos Sci Technol 67(6):1121–1131. https://doi.org/10.1016/j.compscitech.2006.05.016

    Article  Google Scholar 

  40. Mishra AK, Chakraborty S (2015) Determination of material parameters of FRP plates with rotational flexibility at boundaries using experimental modal testing and model updating. Exp Mech 55(5):803–815. https://doi.org/10.1007/s11340-014-9981-0

    Article  Google Scholar 

  41. Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: A tutorial. Mech Syst Signal Pr 25(7):2275–2296. https://doi.org/10.1016/j.ymssp.2010.10.012

    Article  Google Scholar 

  42. Fox RL, Kapoor MP (1968) Rates of change of eigenvalues and eigenvectors. AIAA J 6(12):2426–2429. https://doi.org/10.2514/3.5008

    Article  MATH  Google Scholar 

  43. Deobald LR, Gibson RF (1988) Determination of elastic-constants of orthotropic plates by a modal-analysis Rayleigh-Ritz technique. J Sound Vib 124(2):269–283. https://doi.org/10.1016/S0022-460x(88)80187-1

    Article  Google Scholar 

  44. Pagnotta L (2008) Recent progress in identification methods for the elastic characterization of materials. International Journal of Mechanics 2(4):129–140

    Google Scholar 

  45. Tam JH, Ong ZC, Lau CL, Ismail Z, Ang BC, Khoo SY (2017) Identification of material properties of composite plates using Fourier-generated frequency response functions. Mech Adv Mater Struc:1–10. https://doi.org/10.1080/15376494.2017.1365980

  46. Link M (1999) Updating of Analytical Models — Basic Procedures and Extensions. In: Silva JMM, Maia NMM (eds) Modal Analysis and Testing. Springer Netherlands, Dordrecht, pp 281–304. https://doi.org/10.1007/978-94-011-4503-9_14

    Chapter  Google Scholar 

  47. Lauwagie T, Lambrinou K, Sol H, Heylen W (2010) Resonant-based identification of the poisson’s ratio of orthotropic materials. Exp Mech 50(4): 437–447. https://doi.org/10.1007/s11340-009-9250-9

    Article  Google Scholar 

  48. Wang ZC, Geng D, Ren WX, Liu HT (2014) Strain modes based dynamic displacement estimation of beam structures with strain sensors. Smart Mater Struct 23(12). https://doi.org/10.1088/0964-1726/23/12/125045

  49. Hendrickson IG (1963) Tuned Q analysis of quench and precipitation hardening of 4330M and 17-7PH steels. https://doi.org/10.1520/STP45096S

Download references

Acknowledgments

The authors wish to acknowledge the financial support and advice given by the University of Malaya Research Grant (RP013B-15SUS), Fundamental Research Grant Scheme (FP010-2014A), Advanced Shock and Vibration Research (ASVR) Group of University of Malaya, Postgraduate Research Fund (PG009-2015A) and other project collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, J.H., Ong, Z.C., Ismail, Z. et al. Inverse Identification of Composite Material Properties by using a Two-Stage Fourier Method. Exp Mech 58, 963–981 (2018). https://doi.org/10.1007/s11340-018-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0396-1

Keywords

Navigation