Skip to main content
Log in

Discrete Digital Projections Correlation: A Reconstruction-Free Method to Quantify Local Kinematics in Granular Media by X-ray Tomography

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We propose a new method to measure the translations and rotations of each individual grain in a granular material imaged by computerized tomography. Unlike the classic approach, which requires that both initial and current configurations be fully reconstructed, ours only requires a reconstruction of the initial configuration. In this sense, our method is reconstruction-free, since any subsequent deformed state can be analyzed without further reconstruction. One distinguishing feature of the proposed method is that it requires very few projections of the deformed sample, thus allowing for time-resolved experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. 1 https://www.scipy.org/scipylib/. Retrieved 15 December 2016.

  2. 2 http://cython.org/. Retrieved 15 December 2016.

References

  1. Wan R, Guo P (1998) A simple constitutive model for granular soils: Modified stress-dilatancy approach. Comput Geotech 22(2):109–133. doi:10.1016/S0266-352X(98)00004-4

    Article  Google Scholar 

  2. Sanzeni A, Whittle A, Germaine J, Colleselli F (2012) Compression and creep of venice lagoon sands. J Geotech Geoenviron 138(10):1266–1276. doi:10.1061/(ASCE)GT.1943-5606.0000696

    Article  Google Scholar 

  3. Blanc B, Géminard J C (2013) Intrinsic creep of a granular column subjected to temperature changes. Phys Rev E 88:022,201. doi:10.1103/PhysRevE.88.022201

    Article  Google Scholar 

  4. Karimpour H, Lade P (2013) Creep behavior in Virginia Beach sand. Can Geotech J 50(11):1159–1178. doi:10.1139/cgj-2012-0467w

    Article  Google Scholar 

  5. Kak A, Slaney M (2001) Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics

  6. Hsieh J (2009) Computed tomography: principles, design, artifacts, and recent advances, 2nd edn. Wiley

  7. Desrues J (2004) Tracking strain localization in geomaterials using computerized tomography. In: Otani J, Obara Y (eds) Proceedings of the 1st international workshop on x-ray computerized tomography for geomaterials, kumamoto, Japan, Balkema, pp 15–41

    Google Scholar 

  8. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546. doi:10.1680/geot.1996.46.3.529

    Article  Google Scholar 

  9. Hall S, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60(5):315–322. doi:10.1680/geot.2010.60.5.315

    Article  Google Scholar 

  10. Andò E, Hall S, Viggiani G, Desrues J, Bésuelle P (2012) Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech 7(1):1–13. doi:10.1007/s11440-011-0151-6

    Article  Google Scholar 

  11. Radjai F, Dubois F (eds.) (2011) Discrete-element Modeling of Granular Materials. Wiley-ISTE

  12. Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  13. Thornton C (2010) Quasi-static simulations of compact polydisperse particle systems. Particuology 8(2):119–126. doi:10.1016/j.partic.2009.07.007

    Article  Google Scholar 

  14. Bay B, Smith T, Fyhrie D, Saad M (1999) Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226. doi:10.1007/BF02323555

    Article  Google Scholar 

  15. Bornert M, Chaix JM, Doumalin P, Dupré JC, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Instrum, Mes, Métrologie 4(3-4):43–88

    Google Scholar 

  16. Germaneau A, Doumalin P, Dupré JC (2008) Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3d strain measurement by digital volume correlation. NDT & E Int 41(6):407–415. doi:10.1016/j.ndteint.2008.04.001

    Article  Google Scholar 

  17. Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3):193–205. doi:10.1111/j.1475-1305.2007.00348.x

    Article  Google Scholar 

  18. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos A: Appl Sci Manuf 39(8):1253–1265. doi:10.1016/j.compositesa.2007.11.011 10.1016/j.compositesa.2007.11.011

    Article  Google Scholar 

  19. Desrues J, Andò E (2015) Strain localisation in granular media. Comptes Rendus Phys 16(1):26–36. doi:10.1016/j.crhy.2015.01.001 10.1016/j.crhy.2015.01.001

    Article  Google Scholar 

  20. Lhuissier P, Scheel M, Di Michiel M, Boller E, Adrien J, Maire E, Salvo L, Blandin JJ, Suery M (2012) Ultra fast tomography: New developments for 4d studies in material science. In: De Graef M, Friis Poulsen H, Lewis A, Simmons J, Spanos G (eds) 1st International Conference on 3D Materials Science, John Wiley & Sons, Inc. doi:10.1002/9781118686768.ch31, pp 203–208

    Chapter  Google Scholar 

  21. Limodin N, Salvo L, Suéry M, DiMichiel M (2007) In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8 wt.% Cu alloy. Acta Mater 55(9):3177–3191. doi:10.1016/j.actamat.2007.01.027

    Article  Google Scholar 

  22. Mader K, Marone F, Hintermu̇ller C, Mikuljan G, Isenegger A, Stampanoni M (2011) High-throughput full-automatic synchrotron-based tomographic microscopy. J Synchrotron Radiat 18(2):117–124. doi:10.1107/S0909049510047370

    Article  Google Scholar 

  23. Leclerc H, Roux S, Hild F (2013) X-CT Digital Volume Cxorrelation without reconstruction. In: Cnudde V, Bernard D (eds) 1St international conference on tomography of materials and structures (ICTMS 2013). Ghent, Belgium, pp 265–268

    Google Scholar 

  24. Leclerc H, Roux S, Hild F (2015) Projection savings in CT-based digital volume correlation. Exp Mech 55(1):275–287. doi:10.1007/s11340-014-9871-5

    Article  Google Scholar 

  25. Taillandier-Thomas T, Leclerc H, Roux S, Hild F (2015) Projection-based digital volume correlation: application to crack propagation. In: Long B, Francus P (eds) 2Nd international conference on tomography of materials and structures (ICTMS 2015). Québec, Canada, p 124

    Google Scholar 

  26. Taillandier-Thomas T, Roux S, Hild F (2016) Soft route to 4d tomography. Phys Rev Lett 117:025,501. doi:10.1103/PhysRevLett.117.025501 10.1103/PhysRevLett.117.025501

  27. Sidky E, Kao C, Pan X (2006) Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J Xray Sci Technol 14(2):119–139

    Google Scholar 

  28. Ketcham R, Carlson W (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27(4):381–400. doi:10.1016/S0098-3004(00)00116-3

    Article  Google Scholar 

  29. Maire E, Buffière JY, Salvo L, Blandin JJ, Ludwig W, Létang JM (2001) On the application of x-ray microtomography in the field of materials science. Advan Eng Mater 3 (8):539–546. doi:10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6

    Article  Google Scholar 

  30. Boas FE, Fleischmann D (2012) CT Artifacts: causes and reduction techniques. Imaging Med 4(2):229–240. doi:10.2217/iim.12.13

    Article  Google Scholar 

  31. Rodrigues O (1840) Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de Mathé,matiques Pures et Appliquées 5:380–440

    Google Scholar 

  32. Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32(1-3):85–155. doi:10.1016/0045-7825(82)90069-X 10.1016/0045-7825(82)90069-X

    Article  MathSciNet  MATH  Google Scholar 

  33. Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438. doi:10.1002/nme.1620261105

    Article  MATH  Google Scholar 

  34. Ibrahimbegović A, Frey F, Kožar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673. doi:10.1002/nme.1620382107

    Article  MathSciNet  MATH  Google Scholar 

  35. Siddon R (1985) Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys 12(2):252–255. doi:10.1118/1.595715

    Article  Google Scholar 

  36. Jacobs F, Sundermann E, De Suiter B, Christiaens M, Lemahieu I (1998) A fast algorithm to calculate the exact radiological path through a pixel or voxel space. J Comput Inf Technol 6(1):89–94

    Google Scholar 

  37. Shepp L, Vardi Y (1982) Maximum likelihood reconstruction in positron emission tomography. IEEE Trans Med Imaging, 1(2)

  38. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D, Smith K (2011) Cython: The best of both worlds. Comput Sci Eng 13(2):31–39. doi:10.1109/MCSE.2010.118

    Article  Google Scholar 

  39. Smith KW (2015) Cython – A guide for python programmers. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

  40. McCool M, Robison AD, Reinders J (2012) Structured Parallel Programming. Morgan Kaufmann, 225 Wyman Street, Waltham, MA 02451, USA

  41. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern Software Tools in Scientific Computing, Birkhäuser Press, pp 163–202

    Chapter  Google Scholar 

  42. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H (2015) PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory, http://www.mcs.anl.gov/petsc, accessed 08-04-2016

  43. Morozov VA (1984) Methods for Solving Incorrectly Posed Problems. Springer-Verlag

  44. Beucher S (1992) The watershed transformation applied to image segmentation. In: Scanning microscopy international, cambridge, UK, vol suppl. 6, pp 299–314

  45. Beucher S, Lantuéjoul C (1979) Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation. Rennes , France

  46. Soille P (2004) Morphological image analysis: Principles and applications, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has benefited from a French government grant managed by ANR within the frame of the national program Investments for the Future ANR-11-LABX-022-01.

The authors would like to thank Matthieu Vandamme for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Brisard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, M.H., Brisard, S., Bornert, M. et al. Discrete Digital Projections Correlation: A Reconstruction-Free Method to Quantify Local Kinematics in Granular Media by X-ray Tomography. Exp Mech 57, 819–830 (2017). https://doi.org/10.1007/s11340-017-0263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0263-5

Keywords

Navigation