Skip to main content
Log in

Experimental Method to Evaluate Effective Dynamic Properties of a Meta-Structure for Flexural Vibrations

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this study, a laboratory method to evaluate the effective dynamic properties for flexural vibrations of a meta-structure is presented. The flexural vibration of a beam with periodically spaced resonators was investigated using wave propagation analysis. After analyzing vibration interactions between the resonators and the homogeneous beam, the effective dynamic properties of the meta-structure were evaluated using the transfer function method. The comparison of the measured and predicted results allowed for an understanding of the proposed vibration control mechanism. The effective bending stiffness was not affected by the attached resonators. The effective mass exhibited significant frequency-dependent variation near the natural frequency of the resonators. The effective mass becomes complex when the stiffness of the resonators is viscoelastic. The reflected wave from the metamaterial was completely blocked when the real part of the effective mass became negative. The effective mass decreased as the loss factor of the attached resonators increased. The proposed evaluation method can be used to analyze the effects of resonators on structural vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289:1734–1736. doi:10.1126/science.289.5485.1734

    Article  Google Scholar 

  2. Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5:452–456. doi:10.1038/nmat1644

    Article  Google Scholar 

  3. Liu A, Zhou X, Huang G, Hu G (2012) Super-resolution imaging by resonant tunneling in anisotropic. J Acoust Soc Am 132:2800–2806. doi:10.1121/1.4744932

    Article  Google Scholar 

  4. Mei J, Ma G, Yang M, Wen W, Sheng P (2012) Dark acoustic metamaterials as super absorbers for low frequency sound. Nature Commun 3:756. doi:10.1038/ncomms1758

    Article  Google Scholar 

  5. Seo Y, Park J, Lee S, Park C, Kim C, Lee S (2012) Acoustic metamaterial exhibiting four different sign combiations of density and modulus. J Appl Phys 111:023504. doi:10.1063/1.3676262

    Article  Google Scholar 

  6. Hao L, Ding C, Zhao S (2012) Tunable acoustic metamaterial with negative modulus. J Appl Phys A 106:807–811. doi:10.1007/s00339-011-6682-8

    Article  Google Scholar 

  7. Zhang H, Wen J, Xiao Y, Wang G, Wen X (2015) Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. J Sound Vib 343:104–120. doi:10.1016/j.jsv.2015.01.019

    Article  Google Scholar 

  8. Pai PF, Peng H, Jiang S (2014) Acoustic metamaterial beams based on multi-frequency vibration absrobers. Int J Mech Sci 79:195–205. doi:10.1016/j.ijmecsci.2013.12.013

    Article  Google Scholar 

  9. Cummer SA, Schurig D (2007) One path to acoustic cloaking. New J Phys 9:45. doi:10.1088/1367-2630/9/3/045

    Article  Google Scholar 

  10. Zhang S, Xia C, Fang N (2011) Broadband acoustic cloak for ultrasound waves. Phys Rev Lett 106:024301. doi:10.1103/PhysRevLett.106.024301

    Article  Google Scholar 

  11. Norris AN, Shuvalov AL (2011) Elastic cloaking theory. Wave Motion 49:525–538. doi:10.1016/j.wavemoti.2011.03.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Torrent D, Sánchez-Dehesa J (2008) Acoustic cloaking in two dimensions: a feasible approach. New J Phys 10:063015. doi:10.1088/1367-2630/10/6/063015

    Article  Google Scholar 

  13. Bigoni D, Guenneau S, Movchan A, Prun M (2013) Elastic metamaterials with inertial locally resonant structure: APPLICATION to lensing and localization. Phys Rev B 87:174303. doi:10.1103/PhysRevB.87.174.303

    Article  Google Scholar 

  14. Li Y, Yu G, Liang B, Zou X, Li G, Cheng S, Cheng J (2014) Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci Rep 4:6830. doi:10.1038/srep06830

    Article  Google Scholar 

  15. Layman CN, Martin TP, Moore KM, Calvo DC, Orris GJ (2011) Designing acoustic transformation devices using fluid homogenization of an elastic substructure. Appl Phys Lett 99:163503. doi:10.1063/1.3652914

    Article  Google Scholar 

  16. Smith DR, Schultz S (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104. doi:10.1103/PhysRevB.65.195104

    Article  Google Scholar 

  17. Chen X, Grzegorczyk TM, Wu B-I, Pacheco J, Jr, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608. doi:1103/PhysRevE.70.016608

  18. Fokin V, Ambati M, Sun C, Zhang X (2007) Method for retrieving effective properties of locally resonant acoustic metamaterials. Phys Rev B 76:144302. doi:10.1103/PhysRevB.76.144302

    Article  Google Scholar 

  19. Xiao Y, Weon J, Yu D, Wen X (2013) Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms. J Sound Vib 332:867–893. doi:10.1016/j.jsv.2012.09.035

    Article  Google Scholar 

  20. Bigoni D, Gei M, Movchan AB (2008) Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structural models derived from long-wave asymptotics. J Mech Phys Solids 56:2494–2520. doi:10.1016/j.jmps.2008.02.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  22. Pritz T (1982) Transfer function method for investigating the complex modulus of acoustic materials: rod-like specimen. J Sound Vib 81:359–376. doi:10.1016/0022-460X(82)90245-0

    Article  MATH  Google Scholar 

  23. ANSI (1998) ANSI S2.22-1998. Resonance method for measuring the dynamic mechanical properties of viscoelastic materials. American National Standards Institute, published through the Acoustical Society of America (New York)

  24. Park J (2005) Transfer function methods to measure dynamic mechanical properties of complex structures. J Sound Vib 288:57–79. doi:10.1016/j.jsv.2004.12.019

    Article  Google Scholar 

  25. Park J (2005) Measurements of the frame acoustic properties of porous and granular materials. J Acoust Soc Am 118:3483–3490. doi:10.1121/1.2130929

    Article  Google Scholar 

  26. Park J, Park B, Kim D, Park J (2012) Determination of effective mass density and modulus for resonant metamaterials. J Acoust Soc Am 132:2793–2799. doi:10.1121/1.4744940

    Article  Google Scholar 

  27. Misseroni D, Colquitt DJ, Movchan AB, Movchan NV, Jones IS (2016) Cymatics for the cloaking of flexural vibrations in a structured plate. Sci Rep 6:23929. doi:10.1038/srep23929

    Article  Google Scholar 

  28. Wang YF, Wang YS, Laude V (2015) Wave propagation in two-dimensional viscoelastic metamaterials. Phys Rev B 92:104110. doi:10.1103/PhysRevB.92.104110

    Article  Google Scholar 

  29. Wang T, Sheng MP, Qin QH (2015) Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators. Phys Lett A 380:525–529. doi:10.1016/j.physleta.2015.12.010

    Article  Google Scholar 

  30. Blevins RD (1990) Flow-induced vibration. Krieger Publishing Company, Florida

    MATH  Google Scholar 

  31. Fahy FJ (1985) Sound and structural vibration. Academic, London

    Google Scholar 

  32. Song BH, Bolton JS (2000) A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. J Acoust Soc Am 107:1131–1152. doi:10.1121/1.428404

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2016R1A2B4013054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Kim, B., Cho, S. et al. Experimental Method to Evaluate Effective Dynamic Properties of a Meta-Structure for Flexural Vibrations. Exp Mech 57, 417–425 (2017). https://doi.org/10.1007/s11340-016-0242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0242-2

Keywords

Navigation