Skip to main content
Log in

Artwork Inspection by Shearography with Adapted Loading

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Methods for the investigation of the surface as well as methods to find subsurface and structure weakening defects are of special interest in the field of art conservation. Shearography is a self-referencing interferometric technique that was proven to be useful for the robust detection of various defects under practical conditions. In the past the investigation of artwork using shearography was mainly done by thermal loading. But other loading techniques, like pressure, vibration and humidity change can be applied with advantage. In this paper we investigate the influence of different loading types and mechanisms on the sensitivity of defect detection on artwork considering their possible impact on the intact part of the artwork. At different samples we will show that a kind of mechanic loading provides a suitable method to detect delaminations and cracks without damaging the paintings. For other typical defects like holes, or trapped air other types of loading like the thermal one is more suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schaible V (1990) Überlegungen zum Phänomen der Schüsselbildung an Leinwandgemälden. Z Kunsttechnologie Konservierung 4(2):235–250

    Google Scholar 

  2. Bratasz L, Kozlowski R (2005) Laser sensors for continious In-Situ monitoring for the dimensional of wooden objects. Stud Conserv 50(4):307–315

    Article  Google Scholar 

  3. Thamer H (2012) Das zweite Museumszeitalter: Zur Geschichte der Museen seit den 1970er Jahren. Museen Zwischen Qualität Relevanz: Denkschrift zur Lage Museen 30:33–42

  4. Mecklenburg M (1990) Art in transit: studies in the transport of paintings. National Galery of Art, Washinghton D.C

    Google Scholar 

  5. Hein N, Krekel C (2010) 3D-Weißlicht-Streifenprojektionsscanner zur Untersuchung von Transportschäden an Skulpturen. Z Kunsttechnologie Konservierung 24(1):146–159

    Google Scholar 

  6. Schmid A (2004) Detektion und Charakterisierung von Hohlstellen an Wandmalerei und Putzen. Z Kunsttechnologie Konservierung 18(1):101–120

    Google Scholar 

  7. Mairinger F (2003) Strahlenuntersuchung an Kunstwerken. Seeman Verlag, Leipzig

    Google Scholar 

  8. Stuart B (2007) Analytical techniques in materials conservation. Wiley, Chichester

    Book  Google Scholar 

  9. Tornari V, Bonarou A, Castellini P et al (2001) Laser based systems for the structural diagnostic of artwork an application to XVII-century Byzantine icons. Proc SPIE 4402:172–183

    Article  Google Scholar 

  10. Groves R, Osten W, Doulgeridis M et al (2007) Shearography as part of a multifunctional sensor for the detection of signature features in movable cultural heritage. Proc SPIE 6618:661810–661811

    Article  Google Scholar 

  11. Tornari V (2007) Laser interference - based techniques and applications in structural inspection of works of art. Anal Bioanal Chem 387(761–780):2007

    Google Scholar 

  12. Groves R, Praderutti B, Kouloumpi E, Osten W, Notni G (2009) Structural diagnostics of artwork using shearography and terahertz imaging. NDT & E Int 42:543–549

    Article  Google Scholar 

  13. Heinemann C, Hein N, Krekel C, Morawitz M, Pedrini G, Osten W (2014) Digitale Shearografie zur Zustandanalyse von Gemälden. Z Kunsttechnologie Konservierung 28(1):51–64

    Google Scholar 

  14. Hung Y (1996) Shearography for non-destructive evaluation of composite structures. Opt Lasers Eng 24:161–182

    Article  Google Scholar 

  15. Steinchen W, Yang L (2003) Digital shearography. SPIE Press, Washington

    Google Scholar 

  16. Kalms M, Osten W (2003) Mobile Shearography system for the inspection of aircraft and automotive components. Opt Eng 42(5):1188–1196

    Article  Google Scholar 

  17. Rigden J, Gordon E (1962) The granularity of scattered optical maser light. Proc IRE 50:2367–2368

    Google Scholar 

  18. Goodmann J (1975) Laser speckle and related phenomena, J.C. Danty, 9–75, Springer Verlag, New York

  19. Creath K (1985) Phase-shifting speckle interferometry. Appl Opt 24(18):3053–3058

    Article  Google Scholar 

  20. Wyant J (1982) Interferometric optical metrology: basic principles and new systems. Laser Focus 5:65–71

    Google Scholar 

  21. Hung Y, Ho H (2005) An optical measurement technique and applications. Mater Sci Eng R 49:61–87

    Article  Google Scholar 

  22. Groves R, Li A, Liu X, Hackney S, Peng X, Osten W et al (2009) 2.5 virtual visualization of shearography strain data from a canvas painting. Proc SPIE 7391:739109–1

    Article  Google Scholar 

  23. Osten W, Kalms M, Jueptner W (1999) Some ways to improve the recognition of imperfections in large-scale components using shearography. Proc SPIE 3745:244–256

    Article  Google Scholar 

  24. Ennos A (1975) Speckle interferometry-laser speckle and related phenomena, J.C. Danty, 207, Springer Verlag, Berlin

  25. Lehmann M (1996) Phase shifting interferometry with unresolved speckles: a theoretical investigation. Opt Commun 128:324–340

    Article  Google Scholar 

  26. Gronle M, Lyda W, Wilke M, Kohler C, Osten W (2014) itom: an open source metrology, automation and data evaluation software. Appl Opt 53(14):2974–2982

    Article  Google Scholar 

  27. Herraez M, Burton D, Lalor M, Munther H (2002) Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl Opt 41(35):7437–7444

    Article  Google Scholar 

  28. Carslaw HS, Jaeger JC (1959) Conduction of heat in solid. Oxford University Press, London

    Google Scholar 

  29. Dos Santos WN, Mummery P, Wallwork A (2005) Thermal diffusivity of polymers by the laser flash technique. Polym Test 24:628–634

    Article  Google Scholar 

  30. Hung Y (1982) Shearography: a new optical method for strain measurement and nondestructive testing. Opt Eng 21(3):391–395

    Article  Google Scholar 

  31. Kim K, Kang K, Kang Y, Cheong S (2003) Analysis of an internal crack of pressure pipeline using ESPI and shearography. Opt Laser Technol 35:639–643

    Article  Google Scholar 

  32. EN15757 (2010) Conservation of Cultural Property -Specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials. European Committee for Standardization, Brussel

    Google Scholar 

  33. Morawitz M, Hein N, Alexeenko I, Wilke M, Pedrini G, Krekel C, Osten W (2013) Detection of transport and age induced damages on artwork: an advanced concept. Proc SPIE 8790:879004

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to greatfully acknowledge the support of the DFG-Deutsche Forschungsgemeinschaft (German Research Foundation) under grants No. OS 111/34-1 and KR 3118/1-1. We would also acknowledge Michael Morawitz and Carolin Heinemann for the preparatory work [33].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Buchta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchta, D., Hein, N., Pedrini, G. et al. Artwork Inspection by Shearography with Adapted Loading. Exp Mech 55, 1691–1704 (2015). https://doi.org/10.1007/s11340-015-0070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0070-9

Keywords

Navigation