Skip to main content

Advertisement

Log in

A Dynamic Method for the Residual Stress Measurement During Polymer Crystallization

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A new dynamic method based on bilayer system is proposed to characterize the residual stress formation during the crystallization of semi-crystalline polyethylene glycol 10000 (PEG10000). The resin is coated on a solid polymeric film to create a filmsubstrate compound. Its temperature field and dynamic deflection are monitored by synchronized optical and thermography cameras. The crystallization kinetics is first characterized from the former information. Then a simple dynamic model is proposed to relate the dynamic deflection with crystallization process. Residual stresses are established and in the range of 0–2.1 MPa. The generation of residual stresses is due to the edge constraints of the cantilever beam and to the increase of viscosity during solidification that allows the polymer to carry tensile loadings. The spherulite impingement is found to be important for this period from a microscopic view. Boundary condition should be well controlled to steer residual stresses. Such method is promising to measure residual stresses at the micro-scale for polymers to be spread on a flexible substrate and can mimic different mechanical situations of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zingraff L, Michaud V, Bourban P-E, Månson J-AE (2005) Resin transfer moulding of anionically polymerised polyamide 12. Compos Part A Appl Sci Manuf 36:1675–1686. doi:10.1016/j.compositesa.2005.03.023

    Article  Google Scholar 

  2. Luisier A, Bourban P-E, Månson J-AE (2003) Reaction injection pultrusion of PA12 composites: process and modelling. Compos Part A Appl Sci Manuf 34:583–595. doi:10.1016/S1359-835×(03)00101-5

    Article  Google Scholar 

  3. Parton H, Verpoest I (2005) In situ polymerization of thermoplastic composites based on cyclic oligomers. Polym Compos 26:60–65. doi:10.1002/pc.20074

    Article  Google Scholar 

  4. Parton H, Baets J, Lipnik P et al (2005) Properties of poly (butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer (Guildf) 46:9871–9880. doi:10.1016/j.polymer.2005.07.082

    Article  Google Scholar 

  5. Omairtin P, Mcdonnell P, Connor M et al (2001) Process investigation of a liquid PA-12/carbon fibre moulding system. Compos Part A Appl Sci Manuf 32:915–923. doi:10.1016/S1359-835×(01)00005-7

    Article  Google Scholar 

  6. Corden TJ, Jones IA, Rudd CD et al (1999) Initial development into a novel technique for manufacturing a long fibre thermoplastic bioabsorbable composite:in-situ polymerisation of poly-e-caprolactone. Mol Cell Biol 30:737–746. doi:10.1016/S1359-835×(98)00189-4

    Google Scholar 

  7. Huskic M, Zigon M (2007) PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polym J 43:4891–4897. doi:10.1016/j.eurpolymj.2007.09.009

    Article  Google Scholar 

  8. Parlevliet P, Bersee H, Beukers A (2007) Residual stresses in thermoplastic composites – a study of the literature. Part III: Effects of thermal residual stresses. Compos Part A Appl Sci Manuf 38:1581–1596. doi:10.1016/j.compositesa.2006.12.005

    Article  Google Scholar 

  9. Chiang Y-C, Rösch P, Dabanoglu A et al (2010) Polymerization composite shrinkage evaluation with 3D deformation analysis from microCT images. Dent Mater 26:223–31. doi:10.1016/j.dental.2009.09.013

    Article  Google Scholar 

  10. Hoger A (1993) The elasticity tensors of a residually stressed material. J Elast 31:219–237. doi:10.1007/BF00044971

    Article  MATH  MathSciNet  Google Scholar 

  11. Eduljee RF, Gillespie JW, McCullough RL (1994) Residual stress development in neat poly (Etheretherketone). Polym Eng Sci 34:500–506. doi:10.1002/pen.760340607

    Article  Google Scholar 

  12. Vaillancourt H KK., Wang H, Salloum G (1998) Residual stresses, shrinkage, and warpage of complex injection molded products: numerical simulation and experimental validation. 38:21–37. doi: 10.1002/pen.10162

  13. Gilbert JL (2006) Complexity in modeling of residual stresses and strains during polymerization of bone cement : Effects of conversion, constraint, heat transfer, and viscoelastic property changes. J Biomed Mater Res. doi:10.1002/jbm.a

    Google Scholar 

  14. Gilormini P, Chevalier L, Régnier G (2010) Thermoforming of a PMMA transparency near glass transition temperature. doi: 10.1002/pen

  15. Prime MB (2010) Plasticity effects in incremental slitting measurement of residual stresses. Eng Fract Mech 77:1552–1566. doi:10.1016/j.engfracmech.2010.04.031

    Article  Google Scholar 

  16. Eijpe MPIM, Powell PC (1997) Residual stress evaluation in composites using a modified layer removal method. Compos Struct 37:335–342

    Article  Google Scholar 

  17. Chang C-W, Chen PH, Lien HS (2009) Evaluation of residual stress in pre-stressed concrete material by digital image processing photoelastic coating and hole drilling method. Measurement 42:552–558. doi:10.1016/j.measurement.2008.10.004

    Article  Google Scholar 

  18. Msallem YA (2008) Caractérisation thermique et mécanique d’un matériau composite aéronautique pendant le procédé d’élaboration : contribution à l′estimation des contraintes résiduelles. Ecole Centrale de Nantes

  19. Khoun L, De Oliveira R, Michaud V, Hubert P (2010) Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites. Compos Part A Appl Sci Manuf 42:274–282. doi:10.1016/j.compositesa.2010.11.013

    Article  Google Scholar 

  20. Wróbel G (2007) Ultrasonic methods in diagnostics of polyethylene. Arch Mater Sci Eng 28:413–416

    Google Scholar 

  21. Lee Y-C, Kuo SH (2004) A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate. IEEE Trans Ultrason Ferroelectr Freq Control 51:114–20. doi:10.1109/TUFFC.2004.1268473

    Article  Google Scholar 

  22. Hauk V (2000) Structural and residual stress analysis by X-ray diffraction on polymeric materials and composites. Advances 42:540–554. doi:10.1002/(SICI)1521-4052(199907)30:7<377::AID-MAWE377>3.0.CO;2-H

    Google Scholar 

  23. Coupard D, Palin-luc T, Bristiel P et al (2008) Residual stresses in surface induction hardening of steels: Comparison between experiment and simulation. Mater Sci Eng A 487:328–339. doi:10.1016/j.msea.2007.10.047

    Article  Google Scholar 

  24. Guo Y, Liu Y, Tang JX, Valles JM (2008) Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions. doi: 10.1103/PhysRevLett.98.198103

  25. Vrcelj Z, Bradford MA, Uy B, Wright HD (2002) Buckling of the steel component of a composite member caused by shrinkage and creep of the concrete component. Prog Struct Eng Mater 4:186–192. doi:10.1002/pse.131

    Article  Google Scholar 

  26. Stoney GG (1909) The Tension of Metallic Films Deposited by Electrolysis. Proc R Soc A Math Phys Eng Sci 82:172–175. doi:10.1098/rspa.1909.0021

    Article  Google Scholar 

  27. Zhang Y (2007) Deflections and curvatures of a film – substrate structure with the presence of gradient stress in MEMS applications. 17:753–762. doi: 10.1088/0960-1317/17/4/012

  28. Fang W, Wickert JA (1996) Determining mean and gradient residual stresses in thin films using micromachined cantilevers. 6:301–309. doi: 10.1088/0960-1317/6/3/002

  29. Guisbiers G, Wautelet M, Buchaillot L (2009) Comparison of intrinsic residual stress models in metallic thin films. Scr Mater 60:419–422. doi:10.1016/j.scriptamat.2008.11.014

    Article  Google Scholar 

  30. Ramani K, Zhao W (1997) The evolution of residual stresses in thermoplastic bonding to metals. Int J Adhes Adhes 17:353–357. doi:10.1016/S0143-7496(97)00030-4

    Article  Google Scholar 

  31. Lion A, Engelhard M, Johlitz M (2012) Thermomechanical and calorimetric behaviours of supported glass-forming films: A study based on thermodynamics with internal variables. Thin Solid Films 522:441–451. doi:10.1016/j.tsf.2012.09.009

    Article  Google Scholar 

  32. Kim KS, Hahn HT (1989) Residual stress development during processing of graphite/epoxy composites. Compos Sci Technol 36:121–132. doi:10.1016/0266-3538(89)90083-3

    Article  Google Scholar 

  33. Li CY, Birnkrant MJ, Natarajan LV et al (2005) Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors. Soft Matter 1:238. doi:10.1039/b506876b

    Article  Google Scholar 

  34. Haupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  35. Janeschitz-Kriegl H (2003) How to understand nucleation in crystallizing polymer melts under real processing conditions. Colloid Polym Sci 281:1157–1171. doi:10.1007/s00396-002-0747-3

    Article  Google Scholar 

  36. Lion A, Yagimli B (2009) On the frequency-dependent specific heat and TMDSC: Constitutive modelling based on thermodynamics with internal state variables. Thermochim Acta 490:64–74. doi:10.1016/j.tca.2009.02.016

    Article  Google Scholar 

  37. Strobl G (2006) Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398–442. doi:10.1016/j.progpolymsci.2006.01.001

    Article  Google Scholar 

  38. Wunderlich B (1976) Macromolecular Physics: Crystal Nucleation, Growth, Annealing. Academic, New York

    Google Scholar 

  39. Velisaris CN, Seferis JC (1986) Crystallization kinetics of polyetheretherketone (PEEK) matrices. Polym Eng Sci 26:1574–1581. doi:10.1002/pen.760262208

    Article  Google Scholar 

  40. Lehmann B (2009) Isothermal and non-isothermal crystallisation kinetics of pCBT and PBT. J Therm Anal 95:221–227. doi:10.1007/s10973-007-8939-1

    Article  Google Scholar 

  41. Kosher E (2002) Effets du cisaillement sur la cristallisation du polypropylene: Aspects cinetiques et morphologiques. Universite Lyon I

  42. Pielichowski K, Flejtuch K (2002) Differential scanning calorimetry studies on poly (ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Adv Technol 13:690–696. doi:10.1002/pat.276

    Article  Google Scholar 

  43. PerkinElmer (2011) Application note-Thermal analysis-Tg and Melting Point of a Series of Polyethylene Glycols Using the Material Pocket. In: PerkinElmer,Inc. Technical Libr. web. http://www.perkinelmer.com/CMSResources/Images/44-74297APP_TgandMeltofPolyethylene.pdf. Accessed 1 Jan 2011

  44. Ding Z, Spruiell JE (1996) An experimental method for studying nonisothermal crystallization of polymers at very high cooling rates. J Polym Sci Part B Polym Phys 34:2783–2804. doi:10.1002/(SICI)1099-0488(19961130)34:16<2783::AID-POLB12>3.0.CO;2-6

    Article  Google Scholar 

  45. Supaphol P, Spruiell JE (2002) Nonisothermal bulk crystallization of high-density polyethylene via a modified depolarized light microscopy technique: Further analysis. J Appl Polym Sci 86:1009–1022. doi:10.1002/app.11121

    Article  Google Scholar 

  46. Nagashio K, Murata H, Kuribayashi K (2005) In situ observation of solidification behavior of Si melt dropped on Si wafer by IR thermography. J Cryst Growth 275:e1685–e1690. doi:10.1016/j.jcrysgro.2004.11.230

    Article  Google Scholar 

  47. Solórzano E, García-Moreno F, Babcsán N, Banhart J (2009) Thermographic Monitoring of Aluminium Foaming Process. J Nondestruct Eval 28:141–148. doi:10.1007/s10921-009-0056-6

    Article  Google Scholar 

  48. Gladky A, Ustugov V, Sorokin A (2005) Thermography study of propane oxidation to synthesis-gas over nickel. Chem Eng J 107:33–38. doi:10.1016/j.cej.2004.12.007

    Article  Google Scholar 

  49. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken

    Google Scholar 

  50. Freund LB, Floro JA, Chason E (1999) Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl Phys Lett 74:1987. doi:10.1063/1.123722

    Article  Google Scholar 

  51. D. Ramos, J.Mertens MC and JT (2007) Study of the origin of bending induced by bimetallic effect on microcantilever. 7:1757–1765. doi: 10.3390/s7091757

  52. Nairn JA, Zoller P (1985) Matrix solidification and the resulting residual thermal stresses in composites. J Mater Sci 20:355–367. doi:10.1007/BF00555929

    Article  Google Scholar 

  53. Freund LB, Suresh S (2003) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press

  54. Lamberti G, Peters GWM, Titomanlio G (2007) Crystallinity and Linear Rheological Properties of Polymers. Int Polym Process 22:303–310. doi:10.3139/217.2006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Binetruy, C., Burtin, C. et al. A Dynamic Method for the Residual Stress Measurement During Polymer Crystallization. Exp Mech 54, 1421–1430 (2014). https://doi.org/10.1007/s11340-014-9909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9909-8

Keywords

Navigation