Skip to main content
Log in

Path and Directionality Discovery in Individual Dynamic Models: A Regularized Unified Structural Equation Modeling Approach for Hybrid Vector Autoregression

  • Original Research
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

There recently has been growing interest in the study of psychological and neurological processes at an individual level. One goal in such endeavors is to construct person-specific dynamic assessments using time series techniques such as Vector Autoregressive (VAR) models. However, two problems exist with current VAR specifications: (1) VAR models are restricted in that contemporaneous relations are typically modeled either as undirected relations among residuals or directed relations among observed variables, but not both; (2) current estimation frameworks are limited by the reliance on stepwise model building procedures. This study adopts a new modeling approach. We first extended the current unified SEM (uSEM) framework, a widely used structural VAR model, to a hybrid representation (i.e., “huSEM”) to include both undirected and directed contemporaneous effects, and then replaced the stepwise modeling with a LASSO-type regularization for a global search of the optimal sparse model. Our simulation study showed that regularized huSEM performed uniformly the best over alternative VAR representations and/or modeling approaches, with respect to accurately recovering the presence and directionality of hybrid relations and reliably removing false relations when the data are generated to have two types of contemporaneous relations. The present study to our knowledge is the first application of the recently developed regularized SEM technique to the estimation of huSEM, which points to a promising future for statistical learning in psychometric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that these are arbitrary and relative terminology used for ease in conveying the results.

References

  • Abegaz, F., & Wit, E. (2013). Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics, 14(3), 586–599.

    Article  PubMed  Google Scholar 

  • Anderson, J., & Gerbing, D. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49(2), 155–173. https://doi.org/10.1007/BF02294170.

    Article  Google Scholar 

  • Barrett, A. B., Murphy, M., Bruno, M.-A., Noirhomme, Q., Boly, M., Laureys, S., et al. (2012). Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS ONE, 7(1), e29072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltz, A. M., & Molenaar, P. C. (2016). Dealing with multiple solutions in structural vector autoregressive models. Multivariate Behavioral Research, 51(2–3), 357–373.

    Article  PubMed  Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238.

    Article  PubMed  Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588.

    Article  Google Scholar 

  • Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303–316.

    Article  Google Scholar 

  • Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., et al. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bringmann, L., Lemmens, L., Huibers, M., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the beck depression inventory-ii. Psychological Medicine, 45(4), 747–757.

    Article  PubMed  Google Scholar 

  • Chen, G., Glen, D. R., Saad, Z. S., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., et al. (2011). Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis. Computers in Biology and Medicine, 41(12), 1142–1155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou, C.-P., & Bentler, P. M. (1990). Model modification in covariance structure modeling: A comparison among likelihood ratio, Lagrange multiplier, and Wald tests. Multivariate Behavioral Research, 25(1), 115–136.

    Article  PubMed  Google Scholar 

  • Chou, C.-P., & Huh, J. (2012). Model modification in structural equation modeling.

  • Chow, S.-M., Ho, M.-H. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. https://doi.org/10.1080/10705511003661553.

    Article  Google Scholar 

  • Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., et al. (2013). The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics,. https://doi.org/10.3389/conf.fninf.2013.09.00041.

    Article  Google Scholar 

  • Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.

    Article  PubMed  Google Scholar 

  • Eichler, M. (2005). A graphical approach for evaluating effective connectivity in neural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 953–967.

    Article  Google Scholar 

  • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8(3), 430–457.

    Article  Google Scholar 

  • Epskamp, S. (2018). Graphicalvar: Graphical var for experience sampling data [R package version 0.2.2]. https://CRAN.R-project.org/

  • Epskamp, S. (2020). Psychonetrics: Structural equation modeling and confirmatory network analysis. http://psychonetrics.org/

  • Epskamp, S., & Fried, E. I. (2016). A primer on estimating regularized psychological networks. arXiv preprint arXiv:1607.01367.

  • Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018). The gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453–480.

    Article  PubMed  Google Scholar 

  • Fisher, A. J. (2015). Toward a dynamic model of psychological assessment: Implications for personalized care. Journal of Consulting and Clinical Psychology, 83(4), 825.

    Article  PubMed  Google Scholar 

  • Fisher, A. J., & Boswell, J. F. (2016). Enhancing the personalization of psychotherapy with dynamic assessment and modeling. Assessment, 23(4), 496–506.

    Article  PubMed  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2019). Glasso: Graphical lasso: Estimation of gaussian graphical models [R package version 1.11]. https://CRAN.R-project.org/package=glasso

  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.

    Article  PubMed  Google Scholar 

  • Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23(2), 172–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gates, K. M., Henry, T., Steinley, D., & Fair, D. A. (2016). A Monte Carlo evaluation of weighted community detection algorithms. Frontiers in Neuroinformatics, 10, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52(2), 129–148.

    Article  PubMed  Google Scholar 

  • Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310–319.

    Article  PubMed  Google Scholar 

  • Gates, K. M., Molenaar, P. C., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fmri connectivity mapping: An alternative to granger causality testing using formal equivalences among sem path modeling, var, and unified sem. NeuroImage, 50(3), 1118–1125.

    Article  PubMed  Google Scholar 

  • Gates, K. M., Molenaar, P. C., Hillary, F. G., & Slobounov, S. (2011). Extended unified sem approach for modeling event-related fmri data. NeuroImage, 54(2), 1151–1158.

    Article  PubMed  Google Scholar 

  • Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77(378), 304–313.

    Article  Google Scholar 

  • Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.

    Article  Google Scholar 

  • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2002). On the nature of sem estimates of arma parameters. Structural Equation Modeling: A Multidisciplinary Journal, 9(3), 347–368. https://doi.org/10.1207/S15328007SEM0903_3.

    Article  Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations. Chapman: Hall/CRC.

    Book  Google Scholar 

  • Hillary, F. G., Roman, C. A., Venkatesan, U., Rajtmajer, S. M., Bajo, R., & Castellanos, N. D. (2015). Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology, 29(1), 59.

    Article  PubMed  Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.

    Article  Google Scholar 

  • Huang, J., Ma, S., & Zhang, C.-H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, 18(4), 1603–1618. http://www.jstor.org/stable/24308572

  • Huang, P.-H. (2019). Lslx: Semi-confirmatory structural equation modeling via penalized likelihood. Journal of Statistical Software.

  • Huang, P.-H., Chen, H., & Weng, L.-J. (2017). A penalized likelihood method for structural equation modeling. psychometrika, 82(2), 329–354.

    Article  PubMed  Google Scholar 

  • Jacobucci, R. (2017). Regsem: Regularized structural equation modeling.

  • Jacobucci, R., Grimm, K. J., Brandmaier, A. M., Serang, S., Kievit, R. A., & Scharf, F. (2019). Regsem: Regularized structural equation modeling [R package version 1.3.9]. https://CRAN.R-project.org

  • Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566.

    Article  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1981). Lisrel 5: Analysis of linear structural relationships by maximum likelihood and least squares methods;[user’s guide]. University of Uppsala.

  • Jöreskog, K. G., & Sörbom, D. (1986). Lisrel vi: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Scientific Software.

  • Kaplan, D. (1988). The impact of specification error on the estimation, testing, and improvement of structural equation models. Multivariate Behavioral Research, 23(1), 69–86.

    Article  PubMed  Google Scholar 

  • Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional mri data. Human Brain Mapping, 28(2), 85–93.

    Article  PubMed  Google Scholar 

  • Lane, S. (2017). Regularized structural equation modeling for individual-level directed functional connectivity.

  • Lane, S., Gates, K., Fisher, Z., Arizmendi, C., Molenaar, P., Hallquist, M., Pike, H., Henry, T., Duffy, K., Luo, L., & Beltz, A. (2019). Gimme: Group iterative multiple model estimation [R package version 0.6-1]. https://github.com/GatesLab/gimme/

  • Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. (2019). Uncovering general, shared, and unique temporal patterns in ambulatory assessment data. Psychological Methods, 24(1), 54.

    Article  PubMed  Google Scholar 

  • Lauritzen, S. L. (1996). Graphical models (Vol. 17). Oxford: Clarendon Press.

    Google Scholar 

  • Luo, L., Gates, Z. F., Fisher, Arizmendi, C., Molenaar, P. C. M., & Beltz, K. M., Adriene Gates. (Under Review). Estimating both directed and bidirectional contemporaneous relations in time series data using hybrid-gimme. Psychological Methods.

  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.

    Book  Google Scholar 

  • MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100(1), 107.

    Article  Google Scholar 

  • MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490.

    Article  PubMed  Google Scholar 

  • Meehl, P. E. (1990). Why summaries of research on psychological theories are often uninterpretable. Psychological Reports, 66(1), 195–244.

    Article  Google Scholar 

  • Molenaar, P. C. (2017). Equivalent dynamic models. Multivariate Behavioral Research, 52(2), 242–258.

    Article  PubMed  Google Scholar 

  • Molenaar, P. C. (2019). Granger causality testing with intensive longitudinal data. Prevention Science, 20(3), 442–451.

    Article  PubMed  Google Scholar 

  • Molenaar, P. C., & Lo, L. L. (2016). Alternative forms of granger causality, heterogeneity and non-stationarity. In W. Wiedermann, & A. von Eye (Eds.), Statistics and causality: Methods for applied empirical research (pp. 205–230).

  • Murphy, M., Bruno, M.-A., Riedner, B. A., Boveroux, P., Noirhomme, Q., Landsness, E. C., et al. (2011). Propofol anesthesia and sleep: A high-density eeg study. Sleep, 34(3), 283–291.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., & Van Os, J. (2009). Experience sampling research in psychopathology: Opening the black box of daily life. Psychological Medicine, 39(9), 1533–1547.

    Article  PubMed  Google Scholar 

  • Nichols, T. T., Gates, K. M., Molenaar, P. C., & Wilson, S. J. (2014). Greater bold activity but more efficient connectivity is associated with better cognitive performance within a sample of nicotine-deprived smokers. Addiction Biology, 19(5), 931–940.

    Article  PubMed  Google Scholar 

  • Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., et al. (2017). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biological Psychiatry, 81(4), 347–357.

    Article  PubMed  Google Scholar 

  • Pruttiakaravanich, A., & Songsiri, J. (2018). Convex formulation for regularized estimation of structural equation models.

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

  • Ram, N., & Gerstorf, D. (2009). Time-structured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes. Psychology and Aging, 24(4), 778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. http://www.jstatsoft.org/v48/i02/

  • Rothman, A. J., Levina, E., & Zhu, J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics, 19(4), 947–962.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro, M. D., & Watson, M. W. (1988). Sources of business cycle uctuations (Working Paper No. 2589). National Bureau of Economic Research. https://doi.org/10.3386/w2589

  • Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: With r examples. Berlin: Springer.

    Book  Google Scholar 

  • Sims, C. A. (1981). An autoregressive index model for the U.S., 1948–1975.

  • Smith, S. M. (2012). The future of fmri connectivity. Neuroimage, 62(2), 1257–1266.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011). Network modelling methods for fmri. Neuroimage, 54(2), 875–891.

    Article  PubMed  Google Scholar 

  • Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173–180.

    Article  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

    Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978.

    Article  PubMed  Google Scholar 

  • Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. NeuroImage, 80, 405–415.

    Article  PubMed  Google Scholar 

  • Weigard, A., Lane, S., Gates, K., & Beltz, A. (Under Review). The influence of autoregressive relation strength and search strategy on directionality recovery in gimme.

  • Wigman, J., Van Os, J., Borsboom, D., Wardenaar, K., Epskamp, S., Klippel, A., et al. (2015). Exploring the underlying structure of mental disorders: Cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychological Medicine, 45(11), 2375–2387.

    Article  PubMed  Google Scholar 

  • Wild, B., Eichler, M., Friederich, H.-C., Hartmann, M., Zipfel, S., & Herzog, W. (2010). A graphical vector autoregressive modelling approach to the analysis of electronic diary data. BMC Medical Research Methodology, 10(1), 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, A. G., Beltz, A. M., Gates, K. M., Molenaar, P., & Simms, L. J. (2015). Examining the dynamic structure of daily internalizing and externalizing behavior at multiple levels of analysis. Frontiers in Psychology, 6, 1914.

    PubMed  PubMed Central  Google Scholar 

  • Yang, J., Gates, K. M., Molenaar, P., & Li, P. (2015). Neural changes underlying successful second language word learning: An fmri study. Journal of Neurolinguistics, 33, 29–49.

    Article  Google Scholar 

  • Zou, H., Hastie, T., & Tibshirani, R. (2004). Sparse principal component analysis, Technical Report, Statistics Department, Stanford University.

  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendices

Appendix A: Model Equivalency

We present here a transformation from an huSEM to an equivalent VAR. To start we provide the transformation from Equation 3 in the text:

$$\begin{aligned} Y_t = (I-A)^{-1}\Phi ^* Y_{t-1} + (I-A)^{-1}\zeta _t \end{aligned}$$
(11)

where I is a \(p \times p\) identity matrix and all other values are as before. Note here that \(\Phi ^*\) indicates the lagged matrix obtained in uSEM. It follows that the transformed \(\Psi \) matrix becomes: \(\Theta = (I-A)^{-1}\Psi (I-A)^{-1\prime }\). Following this transformation, we obtain an equivalent VAR representation (Equation 2). Note that \(\Phi = (I-A)^{-1}\Phi ^*\) is the estimates one would expect from VAR analyses of this model. Here we use a numerical example to explicate the different values. Take the following data generating matrices for a hybrid uSEM:

$$\begin{aligned} A = \begin{bmatrix} 0 &{} 0 &{} 0 \\ .4 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{bmatrix},\quad \Phi ^* = \begin{bmatrix} .5 &{} 0 &{} 0 \\ 0 &{} .6 &{} 0 \\ 0 &{} 0 &{} .2 \\ \end{bmatrix},\quad \Psi ^* = \begin{bmatrix} .7 &{} 0 &{} .5 \\ 0 &{} .7 &{} 0 \\ .5 &{} 0 &{} .7 \\ \end{bmatrix}. \end{aligned}$$
(12)

Following transformation the matrices become:

$$\begin{aligned} \Phi = \begin{bmatrix} .5 &{} 0 &{} 0 \\ .2 &{} .6 &{} 0 \\ 0 &{} 0 &{} .2 \\ \end{bmatrix},\quad \Theta = \begin{bmatrix} 1 &{} .4 &{} .5 \\ .4 &{} 1.16 &{} .2 \\ .5 &{} .2 &{} 1 \\ \end{bmatrix} \end{aligned}$$
(13)

As can be seen by this toy example, a contemporaneous covariance emerges among variables 2 and 3: \(\Theta _{2,3}=0.4\). When the variances of the errors are 1, the covariance value of residuals between two given variables in a transformed VAR model will equal that of the corresponding contemporaneous coefficient in the \(\varvec{A}\) matrix of a huSEM. When the variance is less than one, this value will be smaller than the contemporaneous path; if it is larger, this value is higher for the covariance than for the directed value. Additionally, a lagged relation between variables 2 and 3 \(\Phi _{2,3} = .2\) now exists in this transformed version. Since the diagonal of \(\Phi \) will always be less than one for stability of the process to hold (one assumption of these time series) then the cross-lagged value in the transformed VAR will always be lower in absolute value than the value for the coefficient between the same two variables in original the \(\varvec{A}\) matrix. Code is provided in the online supplement for simulating data and replicating these results.

Appendix B: Convergence Result

Nonconvergence occurs when the estimation algorithm fails to arrive at values which meet prescribed minimum criteria under the default settings of the program within a set number of iterations (Anderson & Gerbing, 1984). Since model misspecification is a possible source of nonconvergence, the low convergence rate of Reg-uSEM might result from a number of reasons, one of which might be the omission of the covariance parameters for the contemporaneous variables. This leads to a failure to return a function of estimable parameters that reasonably approximates the variance-covariance structure of the variables provided by the data (Table 2).

Table 2 Rate of Convergence for the models using regsem.

Appendix C: Supplemental Result

See Figs. 10, 11 and Table 3.

Fig. 10
figure 10

Result of fMRI Study Person One. Note: (1) IL = left Insula, IR = right Insula, CM = right median cingulate, PR = right precentral gyrus, SMA = left supplementary motor area; (2) regsem does not provide a plotting function, we used qgraph to plot the result. Plot consists of solid lines on the left represents contemporaneous relations with two-headed curves represent covariance relations, plot with dotted lines on the right represents lagged effects. Green lines represent positive values, and red represent negative. Line width corresponds with coefficient estimate size. Plots only present \(> .01\) relations, similar to the convention in programs like graphicalVAR (Color figure online).

Fig. 11
figure 11

Result of fMRI Study Person One. Note: (1) IL = left Insula, IR = right Insula, CM = right median cingulate, PR = right precentral gyrus, SMA = left supplementary motor area; (2) regsem does not provide a plotting function, we used qgraph to plot the result. Plot consists of solid lines on the left represents contemporaneous relations with two-headed curves represent covariance relations, plot with dotted lines on the right represents lagged effects. Green lines represent positive values, and red represent negative. Line width corresponds with coefficient estimate size. Plots only present \(> .01\) relations, similar to the convention in programs like graphicalVAR.

Table 3 Sensitivity result of supplemental simulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, A., Gates, K.M., Henry, T.R. et al. Path and Directionality Discovery in Individual Dynamic Models: A Regularized Unified Structural Equation Modeling Approach for Hybrid Vector Autoregression. Psychometrika 86, 404–441 (2021). https://doi.org/10.1007/s11336-021-09753-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-021-09753-6

Keywords

Navigation