Skip to main content
Log in

Restricted Maximum Likelihood Estimation for Parameters of the Social Relations Model

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In many areas of research, the round-robin design is used to study interpersonal judgments and behaviors. The resulting data are analyzed with the social relations model (SRM), whereby almost all previously published studies have used ANOVA-based methods or multilevel-based methods to obtain SRM parameter estimates. In this article, the SRM is embedded into the linear mixed model framework, and it is shown how restricted maximum likelihood can be employed to estimate the SRM parameters. It is also described how the effect of covariates on the SRM-specific effects can be estimated. An example is presented to illustrate the approach. We also present the results of a simulation study in which the performance of the proposed approach is compared to the ANOVA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bond, C. F., & Lashley, B. R. (1996). Round-robin analysis of social interaction: Exact and estimated standard errors. Psychometrika, 61, 303–311.

    Article  Google Scholar 

  • Bonito, J. A., & Kenny, D. A. (2010). The measurement of reliability of social relations components from round-robin designs. Personal Relationships, 17, 235–251.

    Article  Google Scholar 

  • Demidenko, E. (2004). Mixed models: Theory and Applications with R (2nd ed.). Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., & Hothorn, T. (2015). Mvtnorm: Multivariate normal and t distributions. Retrieved February 24, 2015, from http://cran.r-project.org/web/packages/mvtnorm.

  • Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian Journal of Statistics, 29, 321–331.

    Article  Google Scholar 

  • Horn, E. M., Collier, W. G., Oxford, J. A., Bond, C. F., & Dansereau, D. F. (1998). Individual differences in dyadic cooperative learning. Journal of Educational Psychology, 90, 153–161.

    Article  Google Scholar 

  • Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. New York: Springer.

    Google Scholar 

  • Kenny, D. A. (1994). Interpersonal Perception: A Social Relations Analysis. New York: Guilford Press.

    Google Scholar 

  • Kenny, D. A. (1998). SOREMO (Computer Software and Manual). Storrs, CT: University of Connecticut.

    Google Scholar 

  • Kenny, D. A. (2007). Estimation of SRM Using Specialized Software. Storrs, CT: University of Connecticut.

    Google Scholar 

  • Kenny, D. A., & Livi, S. (2009). A componential analysis of leadership using the social relations model. In F. J. Yammarino & F. Dansereau (Eds.), Multi-level Issues in Organizational Behavior and Leadership. Bingley: Emerald.

    Google Scholar 

  • Kenny, D. A., Albright, L., Malloy, T. E., & Kashy, D. A. (1994). Consensus in interpersonal perception: Acquaintance and the big five. Psychological Bulletin, 116, 245–258.

    Article  PubMed  Google Scholar 

  • Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). The Analysis of Dyadic Data. New York: Guilford Press.

    Google Scholar 

  • Küfner, A. C. P., Nestler, S., & Back, M. D. (2012). The two pathways to being an (un-)popular narcissist. Journal of Personality, 81, 184–195.

    Article  Google Scholar 

  • Lam, C., Van der Vegt, G. S., Walter, F., & Huang, X. (2011). Harming high performers: Social comparison and interpersonal harming in work teams. Journal of Applied Psychology, 96, 588–601.

    Article  PubMed  Google Scholar 

  • Lashley, B. R., & Bond, C. F. (1997). Significance testing for round robin data. Psychological Methods, 2, 278–291.

    Article  Google Scholar 

  • Lashley, B. R., & Kenny, D. A. (1998). Power estimation in social relations analyses. Psychological Methods, 3, 328–338.

    Article  Google Scholar 

  • Li, H., & Loken, E. (2002). A unified theory of statistical analysis and inference for variance component models for dyadic data. Statistica Sinica, 12, 519–535.

    Google Scholar 

  • Lüdtke, O., Robitzsch, A., Kenny, D. A., & Trautwein, U. (2013). A general and flexible approach to estimating the social relations model using Bayesian methods. Psychological Methods, 18, 101–119.

    Article  PubMed  Google Scholar 

  • McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2004). Generalized, Linear, and Mixed Models (2nd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  • Nestler, S., Grimm, K. J., & Schönbrodt, F. D. (2015). The social consequences and mechanisms of personality: How to analyse longitudinal data from individual, dyadic, round-robin and network designs. European Journal of Personality, 29, 272–295.

    Article  Google Scholar 

  • R Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

  • Schaalje, G. B., McBride, J. B., & Fellingham, G. W. (2002). Adequacy of approximations to distributions of test statistics in complex linear mixed models. Journal of Agricultural, Biological and Environmental Statistics, 7, 512–524.

    Article  Google Scholar 

  • Schönbrodt, F. D., Back, M. D., & Schmukle, S. C. (2012). TripleR: An R package for social relations analyses based on round-robin designs. Behavior Research Methods, 44, 455–470.

    Article  PubMed  Google Scholar 

  • Schönbrodt, F. D., Back, M. D., & Schmukle, S. C. (2015). TripleR: A package for round robin analyses using R. Retrieved February 24, 2015, from http://cran.r-project.org/web/packages/TripleR.

  • Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance Components. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Snijders, T. A. B., & Kenny, D. A. (1999). The social relations model for family data: A multilevel approach. Personal Relationships, 6, 471–486.

    Article  Google Scholar 

  • Verbeke, G., & Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data. Berlin: Springer.

    Google Scholar 

  • Warner, R. M., Kenny, D. A., & Stoto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37, 1742–1757.

    Article  Google Scholar 

  • Wong, G. Y. (1982). Round robin analysis of variance via maximum likelihood. Journal of the American Statistical Association, 77, 714–724.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Sarah Humberg and three anonymous reviewers for very helpful comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Nestler.

Additional information

This article is dedicated to Irmgard Laufer.

Appendices

Appendix 1: Variance–Covariance Matrix of the Judgment Vector y

Equation 5, the basic assumptions outlined above, and some standard results concerning the variance–covariance matrix of a vector of random variables are used to derive the variance–covariance matrix of the judgment vector y. Please note that

$$\begin{aligned}&\begin{pmatrix} Z_{1} &{} Z_{2}\\ Z_{2} &{} Z_{1} \end{pmatrix} \left( \begin{pmatrix} \sigma ^2_{\alpha } &{} \sigma _{\alpha \beta }\\ \sigma _{\alpha \beta } &{} \sigma ^2_{\beta } \end{pmatrix} \otimes I_{mk}\right) \begin{pmatrix} Z_{1}^{'} &{} Z_{2}^{'} \\ Z_{2}^{'} &{} Z_{1}^{'} \end{pmatrix} = \begin{pmatrix} Z_{1} &{} Z_{2}\\ Z_{2} &{} Z_{1} \end{pmatrix} \begin{pmatrix} \sigma ^2_{\alpha } \cdot I_{mk} &{} \sigma _{\alpha \beta } \cdot I_{mk} \\ \sigma _{\alpha \beta } \cdot I_{mk} &{} \sigma ^2_{\beta } \cdot I_{mk} \end{pmatrix} \begin{pmatrix} Z_{1}^{'} &{} Z_{2}^{'} \\ Z_{2}^{'} &{} Z_{1}^{'} \end{pmatrix}\\&\quad = \begin{pmatrix} Z_{1}\sigma ^2_{\alpha }Z_{1}^{'} + Z_{2}\sigma ^2_{\beta }Z_{2}^{'} + Z_{1}\sigma _{\alpha \beta }Z_{2}^{'} + Z_{2}\sigma _{\alpha \beta }Z_{1}^{'} &{} Z_{1}\sigma ^2_{\alpha }Z_{2}^{'} + Z_{2}\sigma ^2_{\beta }Z_{1}^{'} + Z_{1}\sigma _{\alpha \beta }Z_{1}^{'} + Z_{2}\sigma _{\alpha \beta }Z_{2}^{'}\\ Z_{2}\sigma ^2_{\alpha }Z_{1}^{'} + Z_{1}\sigma ^2_{\beta }Z_{2}^{'} + Z_{2}\sigma _{\alpha \beta }Z_{2}^{'} + Z_{1}\sigma _{\alpha \beta }Z_{1}^{'} &{} Z_{2}\sigma ^2_{\alpha }Z_{2}^{'} + Z_{1}\sigma ^2_{\beta }Z_{1}^{'} + Z_{2}\sigma _{\alpha \beta }Z_{1}^{'} + Z_{1}\sigma _{\alpha \beta }Z_{2}^{'} \end{pmatrix}\\&\quad = \begin{pmatrix} Z_{1}\sigma ^2_{\alpha }Z_{1}^{'} &{} Z_{1}\sigma ^2_{\alpha }Z_{2}^{'}\\ Z_{2}\sigma ^2_{\alpha }Z_{1}^{'} &{} Z_{2}\sigma ^2_{\alpha }Z_{2}^{'} \end{pmatrix} + \begin{pmatrix} Z_{2}\sigma ^2_{\beta }Z_{2}^{'} &{} Z_{2}\sigma ^2_{\beta }Z_{1}^{'}\\ Z_{1}\sigma ^2_{\beta }Z_{2}^{'} &{} Z_{1}\sigma ^2_{\beta }Z_{1}^{'} \end{pmatrix} + \begin{pmatrix} \sigma _{\alpha \beta }(Z_{1}Z_{2}^{'} + Z_{2}Z_{1}^{'}) &{} \sigma _{\alpha \beta }(Z_{1}Z_{1}^{'} + Z_{2}Z_{2}^{'})\\ \sigma _{\alpha \beta }(Z_{2}Z_{2}^{'} + Z_{1}Z_{1}^{'}) &{} \sigma _{\alpha \beta }(Z_{2}Z_{1}^{'} + Z_{1}Z_{2}^{'}) \end{pmatrix}\\&\quad = \sigma ^2_{\alpha } \begin{pmatrix} Z_{1}Z_{1}^{'} &{} Z_{1}Z_{2}^{'} \\ Z_{2}Z_{1}^{'} &{} Z_{2}Z_{2}^{'} \end{pmatrix} + \sigma ^2_{\beta } \begin{pmatrix} Z_{2}Z_{2}^{'} &{} Z_{2}Z_{1}^{'}\\ Z_{1}Z_{2}^{'} &{} Z_{1}Z_{1}^{'} \end{pmatrix} + \sigma _{\alpha \beta } \begin{pmatrix} Z_{1}Z_{2}^{'} + Z_{2}Z_{1}^{'} &{} Z_{1}Z_{1}^{'} + Z_{2}Z_{2}^{'} \\ Z_{2}Z_{2}^{'} + Z_{1}Z_{1}^{'} &{} Z_{2}Z_{1}^{'} + Z_{1}Z_{2}^{'} \end{pmatrix}\\&\quad = \sigma ^2_{\alpha } \begin{pmatrix} Z_{1}Z_{1}^{'} &{} Z_{1}Z_{2}^{'} \\ Z_{2}Z_{1}^{'} &{} Z_{2}Z_{2}^{'} \end{pmatrix} + \sigma ^2_{\beta } \begin{pmatrix} Z_{2}Z_{2}^{'} &{} Z_{2}Z_{1}^{'}\\ Z_{1}Z_{2}^{'} &{} Z_{1}Z_{1}^{'} \end{pmatrix} + \sigma _{\alpha \beta } \begin{pmatrix} Z_{1} &{} Z_{2} \\ Z_{2} &{} Z_{1} \end{pmatrix} \begin{pmatrix} Z_{2}^{'} &{} Z_{1}^{'} \\ Z_{1}^{'} &{} Z_{2}^{'} \end{pmatrix}. \end{aligned}$$

Furthermore,

$$\begin{aligned}&\begin{pmatrix} Z_{3} &{} 0\\ 0 &{} Z_{3} \end{pmatrix} \left( \begin{pmatrix} \sigma ^2_{\gamma } &{} \sigma _{\gamma \gamma }\\ \sigma _{\gamma \gamma } &{} \sigma ^2_{\gamma } \end{pmatrix} \otimes I_{m(m-1)k}\right) \begin{pmatrix} Z_{3}^{'} &{} 0\\ 0 &{} Z_{3}^{'} \end{pmatrix}\\&\quad = \begin{pmatrix} Z_{3} &{} 0\\ 0 &{} Z_{3} \end{pmatrix} \begin{pmatrix} \sigma ^2_{\gamma } \cdot I_{m(m-1)k} &{} \sigma _{\gamma \gamma } \cdot I_{m(m-1)k} \\ \sigma _{\gamma \gamma } \cdot I_{m(m-1)k} &{} \sigma ^2_{\gamma } \cdot I_{m(m-1)k} \end{pmatrix} \begin{pmatrix} Z_{3}^{'} &{} 0\\ 0 &{} Z_{3}^{'} \end{pmatrix}\\&\quad = \begin{pmatrix} Z_{3}\sigma ^2_{\gamma }Z_{3}^{'} &{} Z_{3}\sigma _{\gamma \gamma }Z_{3}^{'}\\ Z_{3}\sigma _{\gamma \gamma }Z_{3}^{'} &{} Z_{3}\sigma ^2_{\gamma }Z_{3}^{'} \end{pmatrix}= \sigma ^2_{\gamma } \begin{pmatrix} Z_{3}Z_{3}^{'} &{} 0 \\ 0 &{} Z_{3}Z_{3}^{'} \end{pmatrix} + \sigma _{\gamma \gamma } \begin{pmatrix} 0 &{} Z_{3}Z_{3}^{'}\\ Z_{3}Z_{3}^{'} &{} 0 \end{pmatrix}, \end{aligned}$$

and

$$\begin{aligned}&\begin{pmatrix} I_{N} &{} 0\\ 0 &{} I_{N} \end{pmatrix} \left( \begin{pmatrix} \sigma ^2_{\epsilon } &{} \sigma _{\epsilon \epsilon }\\ \sigma _{\epsilon \epsilon } &{} \sigma ^2_{\epsilon } \end{pmatrix} \otimes I_N\right) \begin{pmatrix} I_{N} &{} 0\\ 0 &{} I_{N} \end{pmatrix} = \begin{pmatrix} I_{N} &{} 0\\ 0 &{} I_{N} \end{pmatrix} \begin{pmatrix} \sigma ^2_{\epsilon } \cdot I_N &{} \sigma _{\epsilon \epsilon } \cdot I_N \\ \sigma _{\epsilon \epsilon } \cdot I_N &{} \sigma ^2_{\epsilon } \cdot I_N \end{pmatrix} \begin{pmatrix} I_{N} &{} 0\\ 0 &{} I_{N} \end{pmatrix}\\&\quad = \begin{pmatrix} I_{N}\sigma ^2_{\epsilon }I_{N} &{} I_{N}\sigma _{\epsilon \epsilon }I_{N}\\ I_{N}\sigma _{\epsilon \epsilon }I_{N} &{} I_{N}\sigma ^2_{\epsilon }I_{N} \end{pmatrix} = \sigma ^2_{\epsilon } \begin{pmatrix} I_{N} &{} 0 \\ 0 &{} I_{N} \end{pmatrix} + \sigma _{\epsilon \epsilon } \begin{pmatrix} 0 &{} I_{N}\\ I_{N} &{} 0 \end{pmatrix}. \end{aligned}$$

The variance–covariance matrix of the judgment vector y then is

$$\begin{aligned} \text {cov} \Bigg (\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}&= \text {cov}\left( \begin{pmatrix} Z_g \\ Z_g \end{pmatrix} g + \begin{pmatrix} Z_1 &{} Z_2 \\ Z_2 &{} Z_1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} Z_3 &{} 0 \\ 0 &{} Z_3 \end{pmatrix} \begin{pmatrix} \gamma _{1} \\ \gamma _{2} \end{pmatrix} + \begin{pmatrix} I_N &{} 0 \\ 0 &{} I_N \end{pmatrix} \begin{pmatrix} \epsilon _{1} \\ \epsilon _{2} \end{pmatrix}\right) \\&= \begin{pmatrix} Z_g \\ Z_g \end{pmatrix} \text {cov}(g) \begin{pmatrix} Z_g^{'} \\ Z_g^{'} \end{pmatrix} + \begin{pmatrix} Z_{1} &{} Z_{2}\\ Z_{2} &{} Z_{1} \end{pmatrix} \text {cov}\left( \begin{pmatrix} \alpha \\ \beta \end{pmatrix}\right) \begin{pmatrix} Z_{1}^{'} &{} Z_{2}^{'}\\ Z_{2}^{'} &{} Z_{1}^{'} \end{pmatrix}\\&\quad + \begin{pmatrix} Z_{3} &{} 0\\ 0 &{} Z_{3} \end{pmatrix} \text {cov}\left( \begin{pmatrix} \gamma _{1} \\ \gamma _{2} \end{pmatrix}\right) \begin{pmatrix} Z_{3}^{'} &{} 0\\ 0 &{} Z_{3}^{'} \end{pmatrix} + \begin{pmatrix} I_N &{} 0\\ 0 &{} I_N \end{pmatrix} \text {cov}\left( \begin{pmatrix} \epsilon _{1} \\ \epsilon _{2} \end{pmatrix}\right) \begin{pmatrix} I_{N}^{'} &{} 0\\ 0 &{} I_{N}^{'} \end{pmatrix}\\&= \begin{pmatrix} Z_g \\ Z_g \end{pmatrix} \begin{pmatrix} \sigma ^{2}_{g} \cdot I_k \\ \sigma ^{2}_{g} \cdot I_k \end{pmatrix} \begin{pmatrix} Z_g^{'} \\ Z_g^{'} \end{pmatrix} + \begin{pmatrix} Z_{1} &{} Z_{2}\\ Z_{2} &{} Z_{1} \end{pmatrix} \left( \begin{pmatrix} \sigma ^2_{\alpha } &{} \sigma _{\alpha \beta }\\ \sigma _{\alpha \beta } &{} \sigma ^2_{\beta } \end{pmatrix} \otimes I_{mk}\right) \begin{pmatrix} Z_{1}^{'} &{} Z_{2}^{'}\\ Z_{2}^{'} &{} Z_{1}^{'} \end{pmatrix}\\&\quad + \begin{pmatrix} Z_{3} &{} 0\\ 0 &{} Z_{3} \end{pmatrix} \left( \begin{pmatrix} \sigma ^2_{\gamma } &{} \sigma _{\gamma \gamma }\\ \sigma _{\gamma \gamma } &{} \sigma ^2_{\gamma } \end{pmatrix} \otimes I_{m(m-1)k}\right) \begin{pmatrix} Z_{3}^{'} &{} 0\\ 0 &{} Z_{3}^{'} \end{pmatrix}\\&\quad + \begin{pmatrix} I_N &{} 0\\ 0 &{} I_N \end{pmatrix} \left( \begin{pmatrix} \sigma ^2_{\epsilon } &{} \sigma _{\epsilon \epsilon }\\ \sigma _{\epsilon \epsilon } &{} \sigma ^2_{\epsilon } \end{pmatrix} \otimes I_{N}\right) \begin{pmatrix} I_{N}^{'} &{} 0\\ 0 &{} I_{N}^{'} \end{pmatrix}\\&= \sigma _{g}^{2} \begin{pmatrix} Z_gZ_g^{'} &{} Z_gZ_g^{'}\\ Z_gZ_g^{'} &{} Z_gZ_g^{'} \end{pmatrix}\\&\quad + \sigma _{\alpha }^{2} \begin{pmatrix} Z_{1} Z_{1}^{'} &{} Z_{1} Z_{2}^{'} \\ Z_{2} Z_{1}^{'} &{} Z_{2} Z_{2}^{'} \end{pmatrix} + \sigma _{\beta }^{2} \begin{pmatrix} Z_{2} Z_{2}^{'} &{} Z_{2} Z_{1}^{'} \\ Z_{1} Z_{2}^{'} &{} Z_{1} Z_{1}^{'} \end{pmatrix} + \sigma _{\alpha \beta } \begin{pmatrix} Z_{1} &{} Z_{2} \\ Z_{2} &{} Z_{1} \end{pmatrix} \begin{pmatrix} Z_{2}^{'} &{} Z_{1}^{'} \\ Z_{1}^{'} &{} Z_{2}^{'} \end{pmatrix}\\&\quad + \sigma _{\gamma }^{2} \begin{pmatrix} Z_{3}Z_{3}^{'} &{} 0 \\ 0 &{} Z_{3}Z_{3}^{'} \end{pmatrix} +\sigma _{\gamma \gamma } \begin{pmatrix} 0 &{} Z_{3}Z_{3}^{'} \\ Z_{3}Z_{3}^{'} &{} 0 \end{pmatrix}\\&\quad + \sigma ^2_{\epsilon } \begin{pmatrix} I_{N} &{} 0 \\ 0 &{} I_{N} \end{pmatrix} + \sigma _{\epsilon \epsilon } \begin{pmatrix} 0 &{} I_{N}\\ I_{N} &{} 0 \end{pmatrix}. \end{aligned}$$

Appendix 2: The Other Social Relation Models

The vector of round-robin judgments y for the basic SRM (see Equation 1) is

$$\begin{aligned} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = Xb + \begin{pmatrix} Z_1 &{} Z_2 \\ Z_2 &{} Z_1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} Z_3 &{} 0 \\ 0 &{} Z_3 \end{pmatrix} \begin{pmatrix} \gamma _{1} \\ \gamma _{2} \end{pmatrix}, \end{aligned}$$

where \(y_{1} = (y_{12}, \ldots , y_{(m-1)m})\) and \(y_{2} = (y_{21}, \ldots , y_{m(m-1)})\). The vector of actor effects is \(\alpha = (\alpha _{1}, \ldots , \alpha _{m})\) and the vector of partner effects is \(\beta = (\beta _{1}, \ldots , \beta _{m})\). \(\gamma _1\) and \(\gamma _2\) denote the relationship effect vectors. Both are defined analogously to \(y_1\) and \(y_2\), respectively. b denotes the general mean, X is a matrix that contains 1s only, and \(Z_i\), \(i = 1, \ldots , 3\), are design matrices containing 0s and 1s (indicating the presence of a random effect). In the basic SRM, relationship effects cannot be separated from error, hence \(Z_3 = I_N\) (where N is the number of judgments). The variance–covariance matrix V of the model is

$$\begin{aligned} \text {V}&= \sigma _{\alpha }^{2} \begin{pmatrix} Z_{1} Z_{1}^{'} &{} Z_{1} Z_{2}^{'} \\ Z_{2} Z_{1}^{'} &{} Z_{2} Z_{2}^{'} \end{pmatrix} + \sigma _{\beta }^{2} \begin{pmatrix} Z_{2} Z_{2}^{'} &{} Z_{2} Z_{1}^{'} \\ Z_{1} Z_{2}^{'} &{} Z_{1} Z_{1}^{'} \end{pmatrix} + \sigma _{\alpha \beta } \begin{pmatrix} Z_{1} &{} Z_{2} \\ Z_{2} &{} Z_{1} \end{pmatrix} \begin{pmatrix} Z_{2}^{'} &{} Z_{1}^{'} \\ Z_{1}^{'} &{} Z_{2}^{'} \end{pmatrix}\\&\quad \ + \sigma _{\gamma }^{2} \begin{pmatrix} I_N &{} 0 \\ 0 &{} I_N \end{pmatrix} + \sigma _{\gamma \gamma } \begin{pmatrix} 0 &{} I_N \\ I_N &{} 0 \end{pmatrix}. \end{aligned}$$

For model estimation it has to be assumed that there are at least four group members, \(m \ge 4\), and at least one measure per dyad.

The vector of judgments y for the single-measure, multiple group SRM is

$$\begin{aligned} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = Xb + \begin{pmatrix} Z_g \\ Z_g \end{pmatrix} g + \begin{pmatrix} Z_1 &{} Z_2 \\ Z_2 &{} Z_1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} Z_3 &{} 0 \\ 0 &{} Z_3 \end{pmatrix} \begin{pmatrix} \gamma _{1} \\ \gamma _{2} \end{pmatrix}, \end{aligned}$$

where \(y_{1} = (y_{121}, \ldots , y_{(m-1)mk})\) and \(y_{2} = (y_{211}, \ldots , y_{m(m-1)k})\). The vector of group effects is \(g = (g_1,\ldots ,g_k)\), the actor effect vector is \(\alpha = (\alpha _{1k}, \ldots , \alpha _{mk})\), and the vector of partner effects is \(\beta = (\beta _{1k}, \ldots , \beta _{mk})\). The relationship effect vectors, \(\gamma _1\) and \(\gamma _2\), are again defined analogously to \(y_1\) and \(y_2\), respectively. b contains the general mean, X is a matrix of 1s, and \(Z_g\), \(Z_i\), \(i = 1, \ldots , 3\), are the design matrices. Similar to the basic SRM, relationship effects cannot be separated from error in this SRM, thus \(Z_3 = I_N\). The variance–covariance matrix of this SRM is

$$\begin{aligned} \text {V}&= \sigma _{g}^{2} \begin{pmatrix} Z_{g}Z_{g}^{'} &{} Z_{g}Z_{g}^{'}\\ Z_{g}^{'}Z_{g} &{} Z_{g}Z_{g}^{'} \end{pmatrix}\\&\quad \ + \sigma _{\alpha }^{2} \begin{pmatrix} Z_{1} Z_{1}^{'} &{} Z_{1} Z_{2}^{'} \\ Z_{2} Z_{1}^{'} &{} Z_{2} Z_{2}^{'} \end{pmatrix} + \sigma _{\beta }^{2} \begin{pmatrix} Z_{2} Z_{2}^{'} &{} Z_{2} Z_{1}^{'} \\ Z_{1} Z_{2}^{'} &{} Z_{1} Z_{1}^{'} \end{pmatrix} + \sigma _{\alpha \beta } \begin{pmatrix} Z_{1} &{} Z_{2} \\ Z_{2} &{} Z_{1} \end{pmatrix} \begin{pmatrix} Z_{2}^{'} &{} Z_{1}^{'} \\ Z_{1}^{'} &{} Z_{2}^{'} \end{pmatrix}\\&\quad \ + \sigma _{\gamma }^{2} \begin{pmatrix} Z_{3}Z_{3}^{'} &{} 0 \\ 0 &{} Z_{3}Z_{3}^{'} \end{pmatrix} + \sigma _{\gamma \gamma } \begin{pmatrix} 0 &{} Z_{3}Z_{3}^{'} \\ Z_{3}Z_{3}^{'} &{} 0 \end{pmatrix}. \end{aligned}$$

To estimate the model parameters, it has to be assumed that there are at least two groups, \(k \ge 2\), with four group members each, \(m \ge 4\), and one measure per dyad, \(l = 1\).

Finally, the judgment vector y for the multiple-measure, one group SRM (see Equation 3) can be represented by

$$\begin{aligned} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = Xb + \begin{pmatrix} Z_1 &{} Z_2 \\ Z_2 &{} Z_1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} Z_3 &{} 0 \\ 0 &{} Z_3 \end{pmatrix} \begin{pmatrix} \gamma _{1} \\ \gamma _{2} \end{pmatrix} + \begin{pmatrix} \epsilon _{1} \\ \epsilon _{2} \end{pmatrix}. \end{aligned}$$

\(y_{1} = (y_{121},\ldots ,y_{12l} \ldots , y_{(m-1)ml})\) and \(y_{2} = (y_{211}, \ldots ,y_{21l},\ldots , y_{m(m-1)l})\). The actor effect vector is \(\alpha = (\alpha _{1}, \ldots , \alpha _{m})\) and the vector of partner effects is \(\beta = (\beta _{1} \ldots , \beta _{m})\). The vector \(\gamma _1 = (\gamma _{12}, \ldots , \gamma _{(m-1)m})\) and the vector \(\gamma _2 = (\gamma _{21}, \ldots , \gamma _{m(m-1)})\) denote the relationship effects. The vector of errors are defined analogously to \(y_1\) and \(y_2\), respectively. Again, b represents the general mean, X is a matrix containing 1s, and \(Z_i\), \(i = 1, \ldots , 3\), are design matrices. In this model, relationship effects can be separated from error, hence \(Z_3 \ne I_N\). The variance–covariance matrix of this model is

$$\begin{aligned} \text {V}&= \sigma _{\alpha }^{2} \begin{pmatrix} Z_{1} Z_{1}^{'} &{} Z_{1} Z_{2}^{'} \\ Z_{2} Z_{1}^{'} &{} Z_{2} Z_{2}^{'} \end{pmatrix} + \sigma _{\beta }^{2} \begin{pmatrix} Z_{2} Z_{2}^{'} &{} Z_{2} Z_{1}^{'} \\ Z_{1} Z_{2}^{'} &{} Z_{1} Z_{1}^{'} \end{pmatrix} + \sigma _{\alpha \beta } \begin{pmatrix} Z_{1} &{} Z_{2} \\ Z_{2} &{} Z_{1} \end{pmatrix} \begin{pmatrix} Z_{2}^{'} &{} Z_{1}^{'} \\ Z_{1}^{'} &{} Z_{2}^{'} \end{pmatrix}\\&\quad \ + \sigma _{\gamma }^{2} \begin{pmatrix} Z_{3}Z_{3}^{'} &{} 0 \\ 0 &{} Z_{3}Z_{3}^{'} \end{pmatrix} + \sigma _{\gamma \gamma } \begin{pmatrix} 0 &{} Z_{3}Z_{3}^{'} \\ Z_{3}Z_{3}^{'} &{} 0 \end{pmatrix}\\&\quad \ + \sigma _{\epsilon }^{2} \begin{pmatrix} I_N &{} 0 \\ 0 &{} I_N \end{pmatrix} + \sigma _{\epsilon \epsilon } \begin{pmatrix} 0 &{} I_N \\ I_N &{} 0 \end{pmatrix}. \end{aligned}$$

To estimate the model, there have to at least four group members, \(m \ge 4\), and two measures per dyad, \(l \ge 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestler, S. Restricted Maximum Likelihood Estimation for Parameters of the Social Relations Model. Psychometrika 81, 1098–1117 (2016). https://doi.org/10.1007/s11336-015-9474-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9474-9

Keywords

Navigation