Skip to main content
Log in

Investigating structural metrics for understandability prediction of data warehouse multidimensional schemas using machine learning techniques

  • Original Paper
  • Published:
Innovations in Systems and Software Engineering Aims and scope Submit manuscript

Abstract

Data warehouse (DW) quality metrics help in evaluating quality attributes and building classification models for predicting multidimensional (MD) schemas as understandable/non-understandable, thereby assisting in DW maintenance. To evaluate DW MD schema quality, we have earlier proposed a set of metrics based on some important aspects of dimension hierarchies and its sharing (like sharing of few hierarchy levels within a dimension; sharing of few hierarchy levels between dimensions, within and across facts) which may lead to structural complexity of MD schemas, thereby affecting its quality. The preliminary empirical validation of these metrics using classical statistical techniques (correlation and linear regression) indicated some of them as possible understandability indicators. However, machine learning (ML) techniques can model the complex associations between DW structural metrics and their quality attributes in a better way. Therefore, this work employs five ML classifiers [J48, partial decision trees (PART), Naïve Bayes, support vector machines (SVM) and logistic regression] to empirically investigate whether accurate prediction models can be built, based on our structural metrics, to be used as understandability predictors. The obtained results reveal that four of our metrics are good predictors of understandability of DW MD schemas. The experimentation further involved comparing the classifiers using mainly five performance measures: accuracy, precision, sensitivity, specificity and area under the receiver operating characteristic curve. The study confirmed the predictive capability of ML techniques for understandability prediction of DW MD schemas. The results also suggest that the SVM and Naïve Bayes classifiers perform better than other classifiers included in the study. Further, the typically used logistic regression technique gave results that were reasonably competitive with the more sophisticated techniques. However, the tree-based (J48) and rule-based (PART) techniques performed significantly worse than the best performing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. WEKA (Waikato Environment for Knowledge Analysis). http://www.cs.waikato.ac.nz/~ml/weka/.

  2. CGPA stands for cumulative grade point average.

References

  1. Abello A, Samos J, Saltor F (2006) YAM2: a multidimensional conceptual model extending UML. Inf Syst 31(6):541–567

    Article  Google Scholar 

  2. Ali S, Smith KA (2006) On learning algorithm selection for classification. Appl Soft Comput 6(2):119–138

    Article  Google Scholar 

  3. Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness models in telecom java software. In: The 18th IEEE international symposium on software reliability, pp 215–224

  4. Baesens B, Van Gestel T, Viaene S, Stepanova M, Suykens J, Vanthienen J (2003) Benchmarking state-of-the-art classification algorithms for credit scoring. J Oper Res Soc 54(6):627–635

    Article  MATH  Google Scholar 

  5. Basili VR, Weiss DM (1984) A methodology for collecting valid software engineering data. IEEE Trans Softw Eng 10(6):728–738

    Article  Google Scholar 

  6. Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators. IEEE Trans Softw Eng 22(10):751–761

    Article  Google Scholar 

  7. Belsley D, Kuh E, Welsch R (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York

    Book  MATH  Google Scholar 

  8. Berenguer G, Romero R, Trujillo J, Serrano M, Piattini M (2005) A set of quality indicators and their corresponding metrics for conceptual models of data warehouses. Data warehousing and knowledge discovery. Springer, Berlin, pp 95–104

    Chapter  Google Scholar 

  9. Briand LC, Morasca S, Basili VR (1996) Property based software engineering measurement. IEEE Trans Softw Eng 22:68–86

    Article  Google Scholar 

  10. Briand LC, Wüst J, Daly JW, Porter DV (2000) Exploring the relationships between design measures and software quality in object-oriented systems. J Syst Softw 51(3):245–273

    Article  Google Scholar 

  11. Brieman L, Friedman J, Olshen R, Stone C (1984) Classification of regression trees. Wadsworth Inc, Belmont

    Google Scholar 

  12. Calero C, Piattini M, Pascual C, Serrano MA (2001) Towards data warehouse quality metrics. In: Proceedings of 3rd international workshop on design and management of data warehouse, Interlaken, Switzerland, p 2

  13. Catal C, Diri B (2009) A systematic review of software fault prediction studies. Expert Syst Appl 36(4):7346–7354

    Article  Google Scholar 

  14. Chang C-C, Lin C-J (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed 07 September 2016

  15. Charness G, Gneezy U, Kuhn MA (2012) Experimental methods: between-subject and within-subject design. J Econ Behav Organ 81(1):1–8

    Article  Google Scholar 

  16. Cherfi SS, Prat N (2003) Multidimensional schemas quality: assessing and balancing analyzability and simplicity. Conceptual modeling for novel application domains. Springer, Berlin, pp 140–151

    Chapter  Google Scholar 

  17. Cohen WW (1995) Fast effective rule induction. In: Proceedings of the 12th international conference on machine learning, pp 115–123

  18. Congdon P (2001) Bayesian statistical modelling. Wiley, New York

    MATH  Google Scholar 

  19. Cruz-Lemus JA, Maes A, Genero M, Poels G, Piattini M (2010) The impact of structural complexity on the understandability of UML statechart diagrams. Inf Sci 180(11):2209–2220

    Article  MathSciNet  Google Scholar 

  20. Darlington R (1968) Multiple regression in psychological research and practice. Psychol Bull 69(3):161–182

    Article  Google Scholar 

  21. Dejaeger K, Verbraken T, Baesens B (2013) Toward comprehensible software fault prediction models using bayesian network classifiers. IEEE Trans Softw Eng 39(2):237–257

    Article  Google Scholar 

  22. Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero–one loss. Mach Learn 29(2–3):103–130

    Article  MATH  Google Scholar 

  23. El-Emam K, Benlarbi S, Goel N, Rai S (1999) A validation of object-oriented metrics. Technical report ERB-1063, NRC, 1999. www.object-oriented.org

  24. English L (1996) Information quality improvement: principles. methods and management. Information Impact International, Brentwood

  25. Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press, London

    Book  MATH  Google Scholar 

  26. Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng 25(5):675–689

    Article  Google Scholar 

  27. Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. In ICML 98:144–151

    Google Scholar 

  28. Gosain A, Singh J (2017) Quality metrics emphasizing dimension hierarchy sharing in multidimensional models for data warehouse: a theoretical and empirical evaluation. Int J Syst Assur Eng Manag 8:1672–1688

    Article  Google Scholar 

  29. Gosain A, Nagpal S, Sabharwal S (2011) Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies. ACM SIGSOFT Softw Eng Notes 36(4):1–5

    Article  Google Scholar 

  30. Gosain A, Nagpal S, Sabharwal S (2013) Validating dimension hierarchy metrics for the understandability of multidimensional models for data warehouse. IET Softw 7(2):93–103

    Article  Google Scholar 

  31. Gosain A, Singh J (2015a) Quality metrics for data warehouse multidimensional models with focus on dimension hierarchy sharing. In: Advances in intelligent informatics. Springer, Berlin, pp 429–443

  32. Gosain A, Singh J (2015b) Conceptual multidimensional modeling for data warehouses: a survey. In: Proceedings of the 3rd international conference on frontiers of intelligent computing: theory and applications. Springer, Berlin, pp 305–316

  33. Hsu CW, Chang CC and Lin CJ (2003) A practical guide to support vector classification. www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  34. Hsu CN, Huang HJ, Wong TT (2000) Why discretization works for naive bayesian classifiers. In Proceedings of the seventeenth international conference on machine learning. Morgan Kaufmann, San Francisco, CA, pp 399–406

  35. ISO (2001) Software product evaluation-quality characteristics and guidelines for their use. ISO/IEC Standard 9126, Geneva

  36. Jarke M, Lenzerini M, Vassiliou Y, Vassiliadis P (2003) Fundamentals of data warehouses, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  37. Jeusfeld MA, Quix C, Jarke M (1998) Design and analysis of quality information for data warehouses. Conceptual modeling-ER’98. Springer, Berlin, pp 349–362

    Google Scholar 

  38. John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp 338–345

  39. Kimball R, Ross M (2002) The data warehouse toolkit: the complete guide to dimensional modeling, 2nd edn. Wiley, London

    Google Scholar 

  40. Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam K, Rosenberg J (2002) Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28(8):721–734

    Article  Google Scholar 

  41. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Int Joint Conf Artif Intell 14(2):1137–1145

    Google Scholar 

  42. Koru AG, Liu H (2005) Building effective defect-prediction models in practice. IEEE Softw 22(6):23–29

    Article  Google Scholar 

  43. Kumar M, Gosain A, Singh Y (2014) Empirical validation of structural metrics for predicting understandability of conceptual schemas for data warehouse. Int J Syst Assur Eng Manag 5(3):291–306

    Article  Google Scholar 

  44. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–74

    Article  MATH  Google Scholar 

  45. Lanubile F, Visaggio G (1997) Evaluating predictive quality models derived from software measures: lessons learned. J Syst Softw 38(3):225–234

    Article  Google Scholar 

  46. Lanubile F, Lonigro A, Vissagio G (1995) Comparing models for identifying fault-prone software components. In: SEKE, pp 312–319

  47. Lemeshow S, Hosmer D (2000) Applied logistic regression. Wiley series in probability and statistics. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  48. Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans Softw Eng 34(4):485–496

    Article  Google Scholar 

  49. Linstedt D, Olschimke M (2015) Building a scalable data warehouse with data vault 2.0. Morgan Kaufmann, Burlington

  50. List B, Bruckner RM, Machaczek K, Schiefer J (2002) A comparison of data warehouse development methodologies case study of the process warehouse. Database and expert systems applications. Springer, Berlin, pp 203–215

    Chapter  Google Scholar 

  51. Lujan-Mora S, Trujillo J, Song IY (2006) A UML profile for multidimensional modeling in data warehouses. Data Knowl Eng 59(3):725–769

    Article  Google Scholar 

  52. Malinowski E, Zimanyi E (2006) Hierarchies in a multidimensional model: from conceptual modeling to logical representation. Data Knowl Eng 59(2):348–377

    Article  Google Scholar 

  53. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38(5):921–931

    Article  Google Scholar 

  54. Mansmann S, Scholl MH (2007) Extending the multidimensional data model to handle complex data. J Comput Sci Eng 1(2):125–160

    Article  Google Scholar 

  55. Melton A (1996) Software measurement. International Thomson Computer Press, London

    MATH  Google Scholar 

  56. Michalski RS, Carbonell JG, Mitchell TM (2013) Machine learning: an artificial intelligence approach. Springer, Berlin

    MATH  Google Scholar 

  57. Nagpal S, Gosain A, Sabharwal S (2013) Theoretical and empirical validation of comprehensive complexity metric for multidimensional models for data warehouse. Int J Syst Assur Eng Manag 4(2):193–204

    Article  Google Scholar 

  58. Nagpal S, Gosain A, Sabharwal S (2012) Complexity metric for multidimensional models for data warehouse. In: Proceedings of the CUBE international information technology conference, pp 360–365

  59. Pedersen TB, Jensen CS, Dyreson CE (2001) A foundation for capturing and querying complex multidimensional data. Inf Syst 26(5):383–423

    Article  MATH  Google Scholar 

  60. Provost F, Kohavi R (1998) On applied research in machine learning. Mach Learn 30:127–132

    Article  Google Scholar 

  61. Quinlan R (1993) C4.5 programs for machine learning. Morgan Kaufmann, Burlington

    Google Scholar 

  62. Riaz M, Mendes E, Tempero E (2009) A systematic review of software maintainability prediction and metrics. In: Proceedings of the 3rd international symposium on empirical software engineering and measurement, pp 367–377

  63. Rizzi S, Abello A, Lechtenbörger J, Trujillo J (2006) Research in data warehouse modeling and design: dead or alive? In: Proceedings of the 9th ACM international workshop on data warehousing and OLAP, pp 3–10

  64. Sabharwal S, Nagpal S, Aggarwal G (2015) Empirical investigation of metrics for multidimensional model of data warehouse using support vector machine. In: 4th International IEEE conference on reliability, infocom technologies and optimization (trends and future directions), pp 1–5

  65. Schuff D, Corral K, Turetken O (2011) Comparing the understandability of alternative data warehouse schemas: an empirical study. Decis Support Syst 52(1):9–20

    Article  Google Scholar 

  66. Serrano MA, Calero C, Piattini M (2003) Experimental validation of multidimensional data models metrics. In: Proceedings of 36th annual Hawaii IEEE international conference on system sciences, p 7

  67. Serrano MA (2004) Definition of a set of metrics for assuring data warehouse quality. Univeristy of Castilla, La Mancha

    Google Scholar 

  68. Serrano MA, Calero C, Piattini M (2002) Validating metrics for data warehouse. Softw IEEE Proc 149(5):161–166

    Article  Google Scholar 

  69. Serrano MA, Calero C, Trujillo J, Lujan-Mora S, Piattini M (2004) Empirical validation of metrics for conceptual models for data warehouse. Advanced information systems engineering. Springer, Berlin, pp 506–520

    Chapter  Google Scholar 

  70. Serrano MA, Calero C, Piattini M (2005) An experimental replication with data warehouse metrics. Int J Data Wareh Min 1(4):1–21

    Article  Google Scholar 

  71. Serrano MA, Trujillo J, Calero C, Piattini M (2007) Metrics for data warehouse conceptual models understandability. Inf Softw Technol 49(8):851–870

    Article  Google Scholar 

  72. Serrano MA, Calero C, Sahraoui HA, Piattini M (2008) Empirical studies to assess the understandability of data warehouse schemas using structural metrics. Softw Quality J 16(1):79–106

    Article  Google Scholar 

  73. Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Cengage learning, ISBN-13: 9780395615560/ISBN-10: 0395615569

  74. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437

    Article  Google Scholar 

  75. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  76. Wen J, Li S, Lin Z, Hu Y, Huang C (2012) Systematic literature review of machine learning based software development effort estimation models. Inf Softw Technol 54(1):41–59

    Article  Google Scholar 

  77. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    MATH  Google Scholar 

  78. Wixom BH, Watson HJ (2001) An empirical investigation of the factors affecting data warehousing success. MIS Q 25:17–41

    Article  Google Scholar 

  79. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software engineering. Springer, Berlin

    Book  MATH  Google Scholar 

  80. Zhang D, Tsai JJ (2003) Machine learning and software engineering. Softw Quality J 11(2):87–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspreeti Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosain, A., Singh, J. Investigating structural metrics for understandability prediction of data warehouse multidimensional schemas using machine learning techniques. Innovations Syst Softw Eng 14, 59–80 (2018). https://doi.org/10.1007/s11334-017-0308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11334-017-0308-z

Keywords

Navigation