Skip to main content
Log in

Effects of antioxidant vitamin supplementation on sports performance, endurance and strength performance: a systematic review and meta-analysis

  • Review
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript
  • 11 Altmetric

Abstract

Supplementation with antioxidant vitamins is common among amateur and elite athletes. It is thought to cause a reduction in the muscle damage that results from exercised-induced oxidative stress, increasing the ability to improve performance markers. A systematic review and meta-analysis were carried out to evaluate the effects of supplementation with antioxidant vitamins (A, C, and E), alone and/or combination of sports performance (maximum oxygen consumption, maximum strength) in athletic populations. Eligibility criteria included only randomized clinical trial studies written in English, Spanish and Portuguese with no restriction on the year of publication. Case studies, observational studies, quasi-experimental trials, literature reviews, and animal studies were excluded from this systematic review. Eligible studies were searched on PubMed/Medline, Web of Science, SciElo, and Google Scholar. To minimize the risk of publication bias, searches were also conducted in the grey literature. Database searches occurred from June to September of 2022. Thirteen randomized controlled trials with a total of 398 participants. The risk of bias was assessed and presented low overall quality. In general, markers of sports performance and overall performance were not affected by antioxidant vitamin supplementation (SMD = 0.00, 95%CI − 0.43, 0.20, P = 0.98). Similarly, evaluations of aerobic resistance (SMD =  − 0.06, 95%CI − 0.31, 0.19, P = 0.66) as well as muscle strength (SMD = 0.04, 95% CI  − 0.31, 0.39, P = 0.81) were not influenced by supplementation. Thus, the results of this meta-analysis of clinical trials demonstrate that supplementation with isolated and/or combined antioxidant vitamins is not associated with improved sports performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable in this section.

References

  1. Powers SK, Deminice R, Ozdemir M et al (2020) Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci 9:415–425. https://doi.org/10.1016/j.jshs.2020.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25. https://doi.org/10.1016/j.fct.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira ALA, Matsubara LS (1997) Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Assoc Med Bras 43:61–68. https://doi.org/10.1590/s0104-42301997000100014

    Article  CAS  PubMed  Google Scholar 

  4. Magder S (2006) Reactive oxygen species: toxic molecules or spark of life? Crit Care 10:208. https://doi.org/10.1186/cc3992

    Article  PubMed  PubMed Central  Google Scholar 

  5. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276. https://doi.org/10.1152/physrev.00031.2007

    Article  CAS  PubMed  Google Scholar 

  6. Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464. https://doi.org/10.1016/S0891-5849(03)00271-5

    Article  CAS  PubMed  Google Scholar 

  7. Stefani GP, Nunes RB, Rossato DD et al (2020) Quantification of DNA damage in different tissues in rats with heart failure. Arq Bras Cardiol 114:234–242. https://doi.org/10.36660/abc.20180198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paschalis V, Theodorou AA, Kyparos A et al (2016) Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr 55:45–53. https://doi.org/10.1007/s00394-014-0821-x

    Article  CAS  PubMed  Google Scholar 

  9. Pingitore A, Lima GPP, Mastorci F et al (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31:916–922. https://doi.org/10.1016/j.nut.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  10. Peternelj TT, Coombes JS (2011) Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med 41:1043–1069. https://doi.org/10.2165/11594400-000000000-00000

    Article  PubMed  Google Scholar 

  11. Otocka-Kmiecik A, Krol A (2020) The role of vitamin C in two distinct physiological states: physical activity and sleep. Nutrients 12:1–29. https://doi.org/10.3390/nu12123908

    Article  CAS  Google Scholar 

  12. McNulty H, Jacob RF, Mason RP (2008) Biologic Activity of Carotenoids Related to Distinct Membrane Physicochemical Interactions. Am J Cardiol 101:S20–S29. https://doi.org/10.1016/j.amjcard.2008.02.004

    Article  CAS  Google Scholar 

  13. Higgins MR, Izadi A, Kaviani M (2020) Antioxidants and exercise performance: with a focus on vitamin e and c supplementation. Int J Environ Res Public Health 17:1–26. https://doi.org/10.3390/ijerph17228452

    Article  CAS  Google Scholar 

  14. de Oliveira DCX, Rosa FT, Simões-Ambrósio L et al (2019) Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition 63–64:29–35. https://doi.org/10.1016/j.nut.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  15. Margonis K, Fatouros IG, Jamurtas AZ et al (2007) Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic Biol Med 43:901–910. https://doi.org/10.1016/j.freeradbiomed.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  16. Lamprecht M (2014) Antioxidants in Sport Nutrition. Antioxidants in Sport Nutrition 1:278

    Google Scholar 

  17. Slattery K, Bentley D, Coutts AJ (2015) The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Med 45:453–471. https://doi.org/10.1007/s40279-014-0282-7

    Article  PubMed  Google Scholar 

  18. Gomez-Cabrera MC, Salvador-Pascual A, Cabo H et al (2015) Redox modulation of mitochondriogenesis in exercise. does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med 86:37–46. https://doi.org/10.1016/j.freeradbiomed.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  19. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. The BMJ. 74(9):790–799. https://doi.org/10.1016/j.rec.2021.07.010

    Article  Google Scholar 

  20. Snider IP, Bazzarre TL, Murdoch SD, Goldfarb A (1992) Effects of coenzyme athletic performance system as an ergogenic aid on endurance performance to exhaustion. Int J Sport Nutr 2:272–286. https://doi.org/10.1123/ijsn.2.3.272

    Article  CAS  PubMed  Google Scholar 

  21. Paulsen G, Hamarsland H, Cumming KT et al (2014) Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol 592:5391–5408. https://doi.org/10.1113/jphysiol.2014.279950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lis DM, Jordan M, Lipuma T et al (2022) Collagen and vitamin C supplementation increases lower limb rate of force development. Int J Sport Nutr Exerc Metab 32:65–73. https://doi.org/10.1123/ijsnem.2020-0313

    Article  CAS  PubMed  Google Scholar 

  23. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cumpston M, Li T, Page MJ et al (2019) Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 10:ED000142

    PubMed  Google Scholar 

  25. Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. The BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  26. Whiting P, Savović J, Higgins JPT et al (2016) ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 69:225–234. https://doi.org/10.1016/j.jclinepi.2015.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dias S, Sutton AJ, Welton NJ, Ades AE (2013) Evidence synthesis for decision making 3: heterogeneity - subgroups, meta-regression, bias, and bias-adjustment. Med Decis Making 33:618–640. https://doi.org/10.1177/0272989X13485157

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bjørnsen T, Salvesen S, Berntsen S et al (2016) Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports 26:755–763. https://doi.org/10.1111/sms.12506

    Article  PubMed  Google Scholar 

  29. Dutra MT, Alex S, Mota MR et al (2018) Effect of strength training combined with antioxidant supplementation on muscular performance. Appl Physiol Nutr Metab 43:775–781. https://doi.org/10.1139/apnm-2017-0866

    Article  CAS  PubMed  Google Scholar 

  30. Paulsen G, Cumming KT, Holden G et al (2014) Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 592:1887–1901. https://doi.org/10.1113/jphysiol.2013.267419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dias JC, Armstrong LE (2004) Textbook of work physiology: physiological bases of exercise. Human kinetics 56(4):30

    Google Scholar 

  32. Theodorou AA, Nikolaidis MG, Paschalis V et al (2011) No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. Am J Clin Nutr 93:1373–1383. https://doi.org/10.3945/ajcn.110.009266

    Article  CAS  PubMed  Google Scholar 

  33. Roberts LA, Beattie K, Close GL, Morton JP (2011) Vitamin C consumption does not impair training-induced improvements in exercise performance. Int J Sports Physiol Perform 6:58–69. https://doi.org/10.1123/ijspp.6.1.58

    Article  PubMed  Google Scholar 

  34. Tauler P, Aguiló A, Gimeno I et al (2006) Response of blood cell antioxidant enzyme defences to antioxidant diet supplementation and to intense exercise. Eur J Nutr 45:187–195. https://doi.org/10.1007/s00394-005-0582-7

    Article  CAS  PubMed  Google Scholar 

  35. Sharman IM, Down MG, Sen RN (1971) The effects of vitamin E and training on physiological function and athletic performance in adolescent swimmers. Br J Nutr 26:265–276. https://doi.org/10.1079/bjn19710033

    Article  CAS  PubMed  Google Scholar 

  36. Aguiló A, Tauler P, Sureda A et al (2007) Antioxidant diet supplementation enhances aerobic performance in amateur sportsmen. J Sports Sci 25:1203–1210. https://doi.org/10.1080/02640410600951597

    Article  PubMed  Google Scholar 

  37. Taghiyar M, Ghiasvand R, Askari G et al (2013) The effect of vitamins C and e supplementation on muscle damage, performance, and body composition in athlete women: a clinical trial. Int J Prev Med 4:S24-30

    PubMed  PubMed Central  Google Scholar 

  38. Chen S, Kim W, Henning SM et al (2010) Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial. J Int Soc Sports Nutr 7:13. https://doi.org/10.1186/1550-2783-7-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Zhang HL, Lu R et al (2008) The decapeptide CMS001 enhances swimming endurance in mice. Peptides (NY) 29:1176–1182. https://doi.org/10.1016/j.peptides.2008.03.004

    Article  CAS  Google Scholar 

  40. Yu FR, Liu Y, Cui YZ et al (2010) Effects of a flavonoid extract from cynomorium songaricum on the swimming endurance of rats. Am J Chin Med 38:65–73. https://doi.org/10.1142/S0192415X10007774

    Article  PubMed  Google Scholar 

  41. Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296:R1071–R1077. https://doi.org/10.1152/ajpregu.90925.2008

    Article  CAS  PubMed  Google Scholar 

  42. Shafat A, Butler P, Jensen RL, Donnelly AE (2004) Effects of dietary supplementation with vitamins C and E on muscle function during and after eccentric contractions in humans. Eur J Appl Physiol 93:196–202. https://doi.org/10.1007/s00421-004-1198-y

    Article  CAS  PubMed  Google Scholar 

  43. Avery NG, Kaiser JL, Sharman MJ et al (2003) Effects of Vitamin E supplementation on recovery from repeated bouts of resistance exercise. J Strength Cond Res 17:801–809. https://doi.org/10.1519/1533-4287(2003)017%3c0801:EOVESO%3e2.0.CO;2

    Article  PubMed  Google Scholar 

  44. Wadley GD, McConell GK (2010) High-dose antioxidant vitamin C supplementation does not prevent acute exercise-induced increases in markers of skeletal muscle mitochondrial biogenesis in rats. J Appl Physiol 108:1719–1726. https://doi.org/10.1152/japplphysiol.00127.2010

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Cabrera MC, Ristow M, Viña J (2012) Antioxidant supplements in exercise: worse than useless? Am J Physiol Endocrinol Metab 302:E476–E477. https://doi.org/10.1152/ajpendo.00567.2011

    Article  CAS  PubMed  Google Scholar 

  46. Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670. https://doi.org/10.1073/pnas.0903485106

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez NR, Di Marco NM, Langley S (2009) Nutrition and athletic performance. Med Sci Sports Exerc 41:709–731. https://doi.org/10.1249/MSS.0b013e31890eb86

    Article  CAS  PubMed  Google Scholar 

  48. García-Cortés M, Robles-Díaz M, Ortega-Alonso A et al (2016) Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics. Int J Mol Sci 17(4):357. https://doi.org/10.3390/ijms17040537

    Article  CAS  Google Scholar 

  49. Morrison D, Hughes J, Della Gatta PA et al (2015) Vitamin C and e supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med 89:852–862. https://doi.org/10.1016/j.freeradbiomed.2015.10.412

    Article  CAS  PubMed  Google Scholar 

  50. Leger LA, Lambert J (1982) A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol 49(1):1–12. https://doi.org/10.1007/BF00428958

    Article  CAS  PubMed  Google Scholar 

  51. Merry TL, Ristow M (2016) Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 594:5135–5147. https://doi.org/10.1113/JP270654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Braakhuis AJ, Hopkins WG, Lowe TE (2014) Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci 14:160–168. https://doi.org/10.1080/17461391.2013.785597

    Article  PubMed  Google Scholar 

  53. Clifford T, Jeffries O, Stevenson EJ, Davies KAB (2020) The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 60:3669–3679. https://doi.org/10.1080/10408398.2019.1703642

    Article  CAS  PubMed  Google Scholar 

  54. Bobeuf F, Labonte M, Dionne IJ, Khalil A (2011) Combined effect of antioxidant supplementation and resistance training on oxidative stress markers, muscle and body composition in an elderly population. J Nut, Health and Aging 15:883–889. https://doi.org/10.1007/s12603-011-0097-2

    Article  CAS  Google Scholar 

  55. Deschenes MR, Kraemer WJ (2002) Performance and physiologic adaptations to resistance training. Am J Phys Med Rehabil 81:S3-16. https://doi.org/10.1097/00002060-200211001-00003

    Article  PubMed  Google Scholar 

  56. Wernbom M, Augustsson J, Thomeé R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264. https://doi.org/10.2165/00007256-200737030-00004

    Article  PubMed  Google Scholar 

  57. Folland JP, Williams AG (2007) The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med 37:145–168. https://doi.org/10.2165/00007256-200737020-00004

    Article  PubMed  Google Scholar 

  58. Yfanti C, Nielsen AR, Åkerström T et al (2011) Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. Am J Physiol Endocrinol Metab 300:E761–E770. https://doi.org/10.1152/ajpendo.00207.2010

    Article  CAS  PubMed  Google Scholar 

  59. Yfanti C, Åkerström T, Nielsen S et al (2010) Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc 42:1388–1395. https://doi.org/10.1249/MSS.0b013e3181cd76be

    Article  CAS  PubMed  Google Scholar 

  60. Yfanti C, Fischer CP, Nielsen S et al (2012) Role of vitamin C and E supplementation on IL-6 in response to training. J Appl Physiol 112:990–1000. https://doi.org/10.1152/japplphysiol.01027.2010

    Article  CAS  PubMed  Google Scholar 

  61. Margaritelis NV, Theodorou AA, Paschalis V et al (2018) Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability. Acta Physiol 222:12898. https://doi.org/10.1111/apha.12898

    Article  CAS  Google Scholar 

  62. Petiz LL, Girardi CS, Bortolin RC et al (2017) Vitamin A oral supplementation induces oxidative stress and suppresses skeletal muscle of trained rats. Nutrients 9:353

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors report no involvement in the research by the sponsor that could have influenced the outcome of this work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GPS; Data curation: GPS; Formal analysis: EKD, GPS; Funding acquisition: GPS; Investigation: EKD, GPS; Methodology: EKD, GPS; Project administration: GPS; Resources: GPS; Software: EKD, GPS; Supervision: GPS; Validation: GPS; Visualization: EKD, GPS; Roles/Writing—original draft: EKD, GPS; Writing—review & editing: EKD, GPS.

Corresponding author

Correspondence to Giuseppe Potrick Stefani.

Ethics declarations

Conflict of interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadalt, E.K., Stefani, G.P. Effects of antioxidant vitamin supplementation on sports performance, endurance and strength performance: a systematic review and meta-analysis. Sport Sci Health (2024). https://doi.org/10.1007/s11332-024-01205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11332-024-01205-9

Keywords

Navigation