Skip to main content

Advertisement

Log in

The association between biomarker angiopoietin-like protein five and obstructive sleep apnea in patients undergoing bariatric surgery

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea (OSA) is prevalent in the bariatric population. OSA should be recognized in patients undergoing bariatric surgery preoperatively to prevent peri- and post-operative complications. Lipid metabolism-related biomarkers are associated with OSA. Triglyceride metabolism is, among others, regulated by angiopoietin-like protein five (ANGPTL5). We aimed to evaluate the level of ANGPTL5 in patients with OSA of different severity levels before and after bariatric surgery.

Methods

We performed a single-center prospective cohort study including a consecutive series of patients who underwent bariatric surgery. We collected the clinical data, polysomnography (PSG) or polygraphy (PG) parameters, and plasma derived via venipuncture before and 6 to 12 months after surgery. Lipid profile, glucose levels, and ANGPTL5 levels were assessed. ANGPTL5 levels were measured using an enzyme-linked immunosorbent assay (ELISA).

Results

The study included 88 patients for analysis. The patients were divided into two subgroups: no or mild OSA (apnea–hypopnea index (AHI) < 15 events/hour, n = 57) and moderate-to-severe OSA (AHI ≥ 15 events/hour, n = 31). The ANGPTL5 level was higher in the moderate-to-severe OSA group (20.5 [15.6, 26.5] ng/mL) compared to the no or mild OSA group (16.3 [12.5, 19.4] ng/mL) (p = 0.008). A significant positive correlation was observed between ANGPTL5 and AHI (ρ = 0.256, p = 0.017), apnea index (AI) (ρ = 0.318, p = 0.003), and triglyceride levels (ρ = 0.240, p = 0.025). ANGPTL5 levels were reduced significantly after bariatric surgery in both moderate-to-severe OSA (15.6 [10.3, 18.7] ng/mL) and no or mild OSA (13.4 [9.2, 15.8] ng/mL) groups, though to a lower level in the group without or mild OSA. Post-surgery, the significant positive correlation between ANGPTL5 and AHI (ρ = 0.210, p = 0.047), AI (ρ = 0.230, p = 0.034), and triglyceride (ρ = 0.397, p < 0.001) remained.

Conclusion

The data showed increased levels of ANGPTL5 in patients with moderate-to-severe OSA. Both AHI and ANGPTL5 levels decreased significantly after bariatric surgery. We also report an association between ANGPTL5 levels and OSA severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AHI:

Apnea-hypopnea index

AI:

Apnea index

ANGPTL:

Angiopoietin-like protein

AUC:

Area under the curve

BMI:

Body mass index

CPAP:

Continuous positive airway pressure

CVD:

Cardiovascular disease

DDI:

Dasman Diabetes Institute

ELISA:

Enzyme-linked immunosorbent assay

HbA1C:

Glycosylated haemoglobin, type A1C

HDL:

High-density lipoprotein

HI:

Hypopnea index

HIF:

Hypoxemia-inducible factor 1

HsCRP:

High sensitivity C-reactive protein

LDL:

Low-density lipoprotein

LPL:

Lipoprotein lipase

LRYGB:

Laparoscopic Roux-en-Y gastric bypass

LSG:

Laparoscopic sleeve gastrectomy

OSA:

Obstructive sleep apnea

PG:

Polygraphy

PSG:

Polysomnography

ROC:

Receiver Operating Characteristic

T2D:

Type 2 diabetes

TGL:

Triglyceride

References

  1. Lam JC, Mak JC, Ip MS (2012) Obesity, obstructive sleep apnoea and metabolic syndrome. Respirology 17(2):223–236

    PubMed  Google Scholar 

  2. Sanchez-de-la-Torre M, Campos-Rodriguez F, Barbe F (2013) Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med 1(1):61–72

    PubMed  Google Scholar 

  3. de Raaff CAL, de Vries N, van Wagensveld BA (n.d) Obstructive sleep apnea and bariatric surgical guidelines: summary and update. (1473–6500 (Electronic)).

  4. Dempsey JA et al (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Angrisani L et al (2017) Bariatric surgery and endoluminal procedures: IFSO Worldwide Survey 2014. Obes Surg 27(9):2279–2289

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Angrisani L et al (2021) Bariatric surgery survey 2018: similarities and disparities among the 5 IFSO chapters. Obes Surg 31(5):1937–1948

    PubMed  PubMed Central  Google Scholar 

  7. Epstein LJ et al (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5(3):263–276

    PubMed  Google Scholar 

  8. Butt M et al (2010) Obstructive sleep apnea and cardiovascular disease. Int J Cardiol 139(1):7–16

    PubMed  Google Scholar 

  9. Gopalakrishnan P, Tak T (2011) Obstructive sleep apnea and cardiovascular disease. Cardiol Rev 19(6):279–290

    PubMed  Google Scholar 

  10. Rasche K et al (2010) Obstructive sleep apnea and type 2 diabetes. Eur J Med Res 15(Suppl 2):152–156

    PubMed  PubMed Central  Google Scholar 

  11. Kendzerska T et al (2014) Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med 190(2):218–25

    PubMed  Google Scholar 

  12. Godoy J et al (2009) Obstructive sleep apnea as an independent stroke risk factor: possible mechanisms. Curr Mol Med 9(2):203–209

    CAS  PubMed  Google Scholar 

  13. Ryan S (2017) Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J Physiol 595(8):2423–2430

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Passali D et al (2015) Oxidative stress in patients with obstructive sleep apnoea syndrome. Acta Otorhinolaryngol Ital 35(6):420–425

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin MT et al (2015) Beneficial effect of continuous positive airway pressure on lipid profiles in obstructive sleep apnea: a meta-analysis. Sleep Breath 19(3):809–817

    PubMed  Google Scholar 

  16. Jun JC et al (2012) Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice. Am J Physiol Endocrinol Metab 303(3):E377–E388

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Drager LF et al (2012) Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J 33(6):783–790

    CAS  PubMed  Google Scholar 

  18. Yao Q et al (2013) Effect of chronic intermittent hypoxia on triglyceride uptake in different tissues. J Lipid Res 54(4):1058–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li J et al (2020) Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 503:19–34

    CAS  PubMed  Google Scholar 

  20. Abu-Farha M et al (2020) The multi-faces of Angptl8 in health and disease: novel functions beyond lipoprotein lipase modulation. Prog Lipid Res 80:101067

    CAS  PubMed  Google Scholar 

  21. Santulli G (2014) Angiopoietin-like proteins: a comprehensive look. Front Endocrinol 5:4

    Google Scholar 

  22. Carbone C et al (2018) Angiopoietin-like proteins in angiogenesis, inflammation and cancer. Int J Mol Sci 19(2): https://doi.org/10.3390/ijms19020431.

  23. Miida T, Hirayama S (2010) Impacts of angiopoietin-like proteins on lipoprotein metabolism and cardiovascular events. Curr Opin Lipidol 21(1):70

    CAS  PubMed  Google Scholar 

  24. Zeng L et al (2003) Identification of a novel human angiopoietin-like gene expressed mainly in heart. 48:159.

  25. Romeo S et al (2009) Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Investig 119(1):70

    CAS  PubMed  Google Scholar 

  26. Hammad MM et al (2020) Correlation of circulating ANGPTL5 levels with obesity, high sensitivity C-reactive protein and oxidized low-density lipoprotein in adolescents. Sci Rep 10(1):6330

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alghanim G et al (2019) Higher levels of ANGPTL5 in the circulation of subjects with obesity and type 2 diabetes are associated with insulin resistance. Front Endocrinol 10:495

    Google Scholar 

  28. Abu-Farha M, Abubaker J, Tuomilehto J (2017) ANGPTL8 (betatrophin) role in diabetes and metabolic diseases. Diabetes/Metab Res Rev 33(8): https://doi.org/10.1002/dmrr.2919

  29. Li C (2007) A tale of two angiopoietin-like proteins. Curr Opin Lipidol 18(5):597

    CAS  PubMed  Google Scholar 

  30. Mattijssen F, Kersten S (2012) Regulation of triglyceride metabolism by angiopoietin-like proteins. Biochem Biophys Acta 1821(5):782

    CAS  PubMed  Google Scholar 

  31. Kersten S (2005) Regulation of lipid metabolism via angiopoietin-like proteins. Biochem Soc Trans 33(Pt 5):1059

    CAS  PubMed  Google Scholar 

  32. Haller JF et al (2017) ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J Lipid Res 58(6):1166–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Leth-Espensen KZ et al (2021) The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding. Proc Natl Acad Sci 118(12):e2026650118

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y et al (2013) Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci U S A 110(40):16109–16114

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oteng AB et al (2019) Characterization of ANGPTL4 function in macrophages and adipocytes using Angptl4-knockout and Angptl4-hypomorphic mice. J Lipid Res 60(10):1741–1754

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Köster A et al (n.d) Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. (0013–7227 (Print)).

  37. Drager LF, Polotsky VY (2011) Lipid metabolism: a new frontier in sleep apnea research. Am J Respir Crit Care Med 184(3):288–290

    PubMed  PubMed Central  Google Scholar 

  38. Savransky V et al (2007) Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med 175(12):1290–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Al-Terki A et al (2018) Increased level of angiopoietin like proteins 4 and 8 in people with sleep apnea. Front Endocrinol 9:651

    Google Scholar 

  40. Li J et al (2020) The clinical role of angiopoietin-like protein 3 in evaluating coronary artery disease in patients with obstructive sleep apnea. Cardiovasc Drugs Ther 34(6):773–780

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schauer PR et al (2012) Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 366(17):1567–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho J-M et al (2015) Effect of sleeve gastrectomy on type 2 diabetes as an alternative treatment modality to Roux-en-Y gastric bypass: systemic review and meta-analysis. Surg Obes Relat Dis 11(6):1273–1280

    PubMed  Google Scholar 

  43. Singh AK, Singh R, Kota SK (2015) Bariatric surgery and diabetes remission: who would have thought it? Indian J Endocrinol Metab 19(5):563–576

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh P et al (2020) Impact of bariatric surgery on cardiovascular outcomes and mortality: a population-based cohort study. Br J Surg 107(4):432–442

    CAS  PubMed  Google Scholar 

  45. Marin JM et al (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053

    PubMed  Google Scholar 

  46. Ban JJ et al (2014) Regulation of obesity and insulin resistance by hypoxia-inducible factors. Hypoxia (Auckl) 2:171–183

    PubMed  Google Scholar 

  47. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373(9657):82–93

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abu-Farha.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leentjens, M., Bosschieter, P.F.N., Al-Terki, A. et al. The association between biomarker angiopoietin-like protein five and obstructive sleep apnea in patients undergoing bariatric surgery. Sleep Breath 27, 1443–1454 (2023). https://doi.org/10.1007/s11325-022-02736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02736-6

Keywords

Navigation