Skip to main content
Log in

Daytime cardiac repolarization in patients with obstructive sleep apnea

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea (OSA) has been implicated in complications of cardiovascular disease, including arrhythmias and sudden cardiac death (SCD). Prolonged QT interval is associated with arrhythmias and SCD in patients with cardiovascular disease and apparently healthy humans. Apneic episodes during sleep in OSA patients are associated with QT prolongation due to increased vagal activity, but it is not understood whether chronic QT prolongation persists during normoxic daytime wakefulness.

Methods

To determine whether daytime QT intervals in OSA patients are prolonged compared to control subjects, we recruited 97 (76 male, 21 female) newly diagnosed patients with OSA [apnea-hypopnea index (AHI) ≥5 events/h] and 168 (100 male, 68 female) healthy volunteers (AHI <5 events/h) and measured daytime resting QT and RR intervals from the electrocardiograms to determine QT prolongation corrected for heart rate (QTc).

Results

All subjects with OSA were older and heavier, with increased heart rate, significantly increased AHI and arousal index, and reduced oxygen saturation (SpO2) during sleep, and spent less time in sleep with >90 % SpO2 compared to respective controls. QTc in patients with OSA (410 ± 3.3 for male and 433 ± 5.6 for female) was significantly increased compared to respective control groups (399 ± 2.9 for male and 417 ± 2.9 for female), after adjustment for age and body mass index.

Conclusions

Our data show that OSA in either men or women is associated with a significant increase in resting daytime QTc. The propensity for ventricular arrhythmias in patients with OSA may be a result of abnormalities in resting cardiac repolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T (2008) Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118(10):1080–1111

    Article  PubMed  Google Scholar 

  2. Guilleminault C, Connolly SJ, Winkle RA (1983) Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome. Am J Cardiol 52(5):490–494

    Article  CAS  PubMed  Google Scholar 

  3. Pearce S, Saunders P (2003) Obstructive sleep apnoea can directly cause death. Thorax 58(4):369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J (1991) QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83(6):1888–1894

    Article  CAS  PubMed  Google Scholar 

  5. Schouten EG, Dekker JM, Meppelink P, Kok FJ, Vandenbroucke JP, Pool J (1991) QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation 84(4):1516–1523

    Article  CAS  PubMed  Google Scholar 

  6. de Bruyne MC, Kors JA, Hoes AW, Klootwijk P, Dekker JM, Hofman A, van Bemmel JH, Grobbee DE (1999) Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam Study. Am J Epidemiol 150(12):1282–1288

    Article  PubMed  Google Scholar 

  7. de Bruyne MC, Hoes AW, Kors JA, Hofman A, van Bemmel JH, Grobbee DE (1999) Prolonged QT interval predicts cardiac and all-cause mortality in the elderly. The Rotterdam Study. Eur Heart J 20(4):278–284

    Article  PubMed  Google Scholar 

  8. Rautaharju PM, Nelson JC, Kronmal RA, Zhang ZM, Robbins J, Gottdiener JS, Furberg CD, Manolio T, Fried L (2001) Usefulness of T-axis deviation as an independent risk indicator for incident cardiac events in older men and women free from coronary heart disease (the Cardiovascular Health Study). Am J Cardiol 88(2):118–123

    Article  CAS  PubMed  Google Scholar 

  9. Davey P (2000) QT interval and mortality from coronary artery disease. Prog Cardiovasc Dis 42(5):359–384

    Article  CAS  PubMed  Google Scholar 

  10. Munger RG, Prineas RJ, Crow RS, Changbumrung S, Keane V, Wangsuphachart V, Jones MP (1991) Prolonged QT interval and risk of sudden death in South-East Asian men. Lancet 338(8762):280–281

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz PJ, Wolf S (1978) QT interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation 57(6):1074–1077

    Article  CAS  PubMed  Google Scholar 

  12. Wheelan K, Mukharji J, Rude RE, Poole WK, Gustafson N, Thomas LJ Jr, Strauss HW, Jaffe AS, Muller JE, Roberts R et al (1986) Sudden death and its relation to QT-interval prolongation after acute myocardial infarction: two-year follow-up. Am J Cardiol 57(10):745–750

    Article  CAS  PubMed  Google Scholar 

  13. Krasemann T, Strompen C, Blumenberg J, Gehrmann J, Burkhardtsmaier G, Vogt J (2009) Changes of the corrected QT interval in healthy boys and girls over day and night. Eur Heart J 30(2):202–208

    Article  PubMed  Google Scholar 

  14. Kautzner J, Yi G, Camm AJ, Malik M (1994) Short- and long-term reproducibility of QT, QTc, and QT dispersion measurement in healthy subjects. Pacing Clin Electrophysiol 17(5 Pt 1):928–937

    Article  CAS  PubMed  Google Scholar 

  15. Veglio M, Maule S, Matteoda C, Quadri R, Valentini M, Pecchio O, Piancino G, Chiandussi L (1996) Use of corrected QT interval in autonomic function testing: assessment of reproducibility. Clin Auton Res 6(6):309–312

    Article  CAS  PubMed  Google Scholar 

  16. Browne KF, Prystowsky E, Heger JJ, Chilson DA, Zipes DP (1983) Prolongation of the Q-T interval in man during sleep. Am J Cardiol 52(1):55–59

    Article  CAS  PubMed  Google Scholar 

  17. Shamsuzzaman AS, Gersh BJ, Somers VK (2003) Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA 290(14):1906–1914

    Article  CAS  PubMed  Google Scholar 

  18. Gillis AM, Stoohs R, Guilleminault C (1991) Changes in the QT interval during obstructive sleep apnea. Sleep 14(4):346–350

    CAS  PubMed  Google Scholar 

  19. Horii M, Takasaki I, Ohtsuka K, Tsukiyama H, Takahashi A, Hatori Y, Hakuta T (1987) Changes of heart rate and QT interval at high altitude in alpinists: analysis by Holter ambulatory electrocardiogram. Clin Cardiol 10(4):238–242

    Article  CAS  PubMed  Google Scholar 

  20. Fuenmayor AJ, Stock FU, Fuenmayor AC, Fuenmayor PA (2002) QT interval and final portion of T wave: measurements and dispersion in infants born at high altitude. Int J Cardiol 82(2):123–126

    Article  PubMed  Google Scholar 

  21. Roche F, Reynaud C, Pichot V, Duverney D, Costes F, Garet M, Gaspoz JM, Barthelemy JC (2003) Effect of acute hypoxia on QT rate dependence and corrected QT interval in healthy subjects. Am J Cardiol 91(7):916–919

    Article  PubMed  Google Scholar 

  22. Lehmann MH, Timothy KW, Frankovich D, Fromm BS, Keating M, Locati EH, Taggart RT, Towbin JA, Moss AJ, Schwartz PJ, Vincent GM (1997) Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J Am Coll Cardiol 29(1):93–99

    Article  CAS  PubMed  Google Scholar 

  23. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165(9):1217–1239

    Article  PubMed  Google Scholar 

  24. Bazett H (1918) An analysis of the time-relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  25. Smith TA, Mason JM, Bell JS, Francisco JT (1979) Sleep apnea and Q-T interval prolongation—a particularly lethal combination. Am Heart J 97(4):505–508

    Article  CAS  PubMed  Google Scholar 

  26. Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, Sahadevan J, Redline S (2006) Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir Crit Care Med 173(8):910–916

    Article  PubMed Central  PubMed  Google Scholar 

  27. Javaheri S (2000) Effects of continuous positive airway pressure on sleep apnea and ventricular irritability in patients with heart failure. Circulation 101(4):392–397

    Article  CAS  PubMed  Google Scholar 

  28. Ryan CM, Usui K, Floras JS, Bradley TD (2005) Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnoea. Thorax 60(9):781–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Dietrich H, Borchard U, Hafner D, Hirth C (1985) Antiarrhythmic and electrophysiological actions of flecainide, bepridil and amiodarone on isolated heart preparations during controlled hypoxia. Arch Int Pharmacodyn Ther 274(2):267–282

    CAS  PubMed  Google Scholar 

  30. Murakawa Y, Inoue H, Nozaki A, Sugimoto T (1992) Role of sympathovagal interaction in diurnal variation of QT interval. Am J Cardiol 69(4):339–343

    Article  CAS  PubMed  Google Scholar 

  31. Magnano AR, Holleran S, Ramakrishnan R, Reiffel JA, Bloomfield DM (2002) Autonomic nervous system influences on QT interval in normal subjects. J Am Coll Cardiol 39(11):1820–1826

    Article  PubMed  Google Scholar 

  32. Ahnve S, Vallin H (1982) Influence of heart rate and inhibition of autonomic tone on the QT interval. Circulation 65(3):435–439

    Article  CAS  PubMed  Google Scholar 

  33. Narkiewicz K, Somers VK (2003) Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 177(3):385–390

    Article  CAS  PubMed  Google Scholar 

  34. Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK (1998) Altered cardiovascular variability in obstructive sleep apnea. Circulation 98(11):1071–1077

    Article  CAS  PubMed  Google Scholar 

  35. Cicek D, Lakadamyali H, Gokay S, Sapmaz I, Muderrisoglu H (2012) Effect of obstructive sleep apnea on heart rate, heart rate recovery and QTc and P-wave dispersion in newly diagnosed untreated patients. Am J Med Sci 344(3):180–185. doi:10.1097/MAJ.0b013e318239a67f

    Article  PubMed  Google Scholar 

  36. Barta K, Szabo Z, Kun C, Munkacsy C, Bene O, Magyar MT, Csiba L, Lorincz I (2010) The effect of sleep apnea on QT interval, QT dispersion, and arrhythmias. Clin Cardiol 33(6):E35–E39. doi:10.1002/clc.20619

    Article  PubMed  Google Scholar 

  37. Rossi VA, Stoewhas AC, Camen G, Steffel J, Bloch KE, Stradling JR, Kohler M (2012) The effects of continuous positive airway pressure therapy withdrawal on cardiac repolarization: data from a randomized controlled trial. Eur Heart J 33(17):2206–2212. doi:10.1093/eurheartj/ehs073

    Article  PubMed  Google Scholar 

  38. Baumert M, Smith J, Catcheside P, McEvoy RD, Abbott D, Sanders P, Nalivaiko E (2008) Variability of QT interval duration in obstructive sleep apnea: an indicator of disease severity. Sleep 31(7):959–966

    PubMed Central  PubMed  Google Scholar 

  39. Tirlapur VG, Mir MA (1982) Nocturnal hypoxemia and associated electrocardiographic changes in patients with chronic obstructive airways disease. N Engl J Med 306(3):125–130

    Article  CAS  PubMed  Google Scholar 

  40. De Olazabal JR, Miller MJ, Cook WR, Mithoefer JC (1982) Disordered breathing and hypoxia during sleep in coronary artery disease. Chest 82(5):548–552

    Article  PubMed  Google Scholar 

  41. Kassotis J, Costeas C, Bedi AK, Tolat A, Reiffel J (2000) Effects of aging and gender on QT dispersion in an overtly healthy population. Pacing Clin Electrophysiol 23(7):1121–1126

    Article  CAS  PubMed  Google Scholar 

  42. el-Gamal A, Gallagher D, Nawras A, Gandhi P, Gomez J, Allison DB, Steinberg JS, Shumacher D, Blank R, Heymsfield SB (1995) Effects of obesity on QT, RR, and QTc intervals. Am J Cardiol 75(14):956–959

    Article  CAS  PubMed  Google Scholar 

  43. Vervaet P, Amery W (1993) QTc-measurements: a case–control study on serum electrolytes. Acta Cardiol 48(6):565–578

    CAS  PubMed  Google Scholar 

  44. Johansson BW, Jorming B (1972) Hereditary prolongation of QT interval. Br Heart J 34(7):744–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Fu EY, Clemo HF, Ellenbogen KA (1998) Acquired QT prolongation: mechanisms and implications. Cardiol Rev 6(6):319–324

    Article  PubMed  Google Scholar 

  46. Henderson W, Chu J, Hoffman R (2001) QTc prolongation and drugs. Clin Pharmacol Ther 70(6):567–568

    Article  CAS  PubMed  Google Scholar 

  47. Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH (1993) Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270(21):2590–2597

    Article  CAS  PubMed  Google Scholar 

  48. Lu HR, Remeysen P, Somers K, Saels A, De Clerck F (2001) Female gender is a risk factor for drug-induced long QT and cardiac arrhythmias in an in vivo rabbit model. J Cardiovasc Electrophysiol 12(5):538–545

    Article  CAS  PubMed  Google Scholar 

  49. Kimbrough J, Moss AJ, Zareba W, Robinson JL, Hall WJ, Benhorin J, Locati EH, Medina A, Napolitano C, Priori S, Schwartz PJ, Timothy K, Towbin JA, Vincent GM, Zhang L (2001) Clinical implications for affected parents and siblings of probands with long-QT syndrome. Circulation 104(5):557–562

    Article  CAS  PubMed  Google Scholar 

  50. Khositseth A, Nantarakchaikul P, Kuptanon T, Preutthipan A (2011) QT dispersion in childhood obstructive sleep apnoea syndrome. Cardiol Young 21(2):130–135. doi:10.1017/S1047951110001514

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to J. Denise Wetzel, CCHMC Medical Writer, for critical review of the manuscript.

Funding

These studies were supported by a Perkins Memorial Award, an American Heart Association Scientist Development Grant (0730129N, AS) and AHA Fellowship Grant (09-20069G, FSK), and the National Institutes of Health (NIH) grants HL-70302, HL-65176, TW05463, TW05469, and 1 UL1 RR024150. This publication was made possible by CTSA Grant Number UL1 TR000135 from the National Center for Advancing Translational Sciences (NCATS), a component of the NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Conflict of interest

Dr. Somers has served as a consultant for Respicardia, NeuPro, and ResMed and is an investigator on studies funded with grants from the Philips Respironics Foundation. Dr. Pressman has received funding from the Philips Respironics Foundation. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Shamsuzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsuzzaman, A., Amin, R.S., van der Walt, C. et al. Daytime cardiac repolarization in patients with obstructive sleep apnea. Sleep Breath 19, 1135–1140 (2015). https://doi.org/10.1007/s11325-015-1119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1119-9

Keywords

Navigation