Skip to main content
Log in

18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Following Chimeric Antigen Receptor T-cell Therapy in Large B-cell Lymphoma

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

18F-Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) is a well-established imaging modality to assess responses in patients with B-cell neoplasms. However, there is limited information about the utility of FDG PET/CT after chimeric antigen receptor T-cell (CART) therapies for large B-cell lymphomas. In this retrospective analysis, we aimed to evaluate how FDG PET/CT performs in patients receiving commercially available anti-CD19 CART therapies for relapsed/refractory (r/r) large B-cell lymphomas. In addition, we examined the time to repeat scan and the rate of pseudoprogression within this population. Lastly, the rates of radiographic response to CART therapy using FDG PET/CT are reported.

Procedures

The pre-treatment and post-treatment scans were analyzed from a selected cohort of 43 patients from a single institution. Patients were stratified by diagnosis of either a first occurrence of diffuse large B-cell lymphoma: de novo diffuse large B-cell lymphoma (DLBCL); or a transformed diffuse large B-cell lymphoma arising from indolent non-Hodgkin lymphoma (t-iNHL).

Results

More patients received CART therapy for DLBCL than t-iNHL (65 % vs 35 %). FDG PET/CT had a 99 % sensitivity and 100 % specificity for detecting recurrent disease in this group. The median time to initial response assessment was 86 days (IQR 79–91; full range 24–146) after infusion. There were no biopsy-proven cases of pseudoprogression identified. In this selected group of patients, the overall response rate by Lugano 2014 criteria was 56 %. All patients with a partial response (N = 6) eventually progressed despite additional therapy.

Conclusions

Due to its excellent test characteristics and ability to detect asymptomatic disease, routine surveillance with PET/CT at 3 months after CART infusion is supported by our data. Earlier PET/CT may be of value in select situations as we did not find any cases of pseudoprogression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 2

Similar content being viewed by others

References

  1. Subklewe M, Von Bergwelt-Baildon M, Humpe A (2019) Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemother 46(1):15–24. https://doi.org/10.1159/000496870

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, Maus MV, Park JH, Mead E, Pavletic S, Go WY, Eldjerou L, Gardner RA, Frey N, Curran KJ, Peggs K, Pasquini M, DiPersio JF, van den Brink MRM, Komanduri KV, Grupp SA, Neelapu SS (2019) ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biology of Blood and Marrow Transplantation 25(4):625–638. https://doi.org/10.1016/j.bbmt.2018.12.758

    Article  CAS  PubMed  Google Scholar 

  3. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, Brogdon JL, Pruteanu-Malinici I, Bhoj V, Landsburg D, Wasik M, Levine BL, Lacey SF, Melenhorst JJ, Porter DL, June CH (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377(26):2545–2554. https://doi.org/10.1056/nejmoa1708566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, McSweeney P, Munoz J, Avivi I, Castro JE, Westin JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J, Elias M, Chang D, Wiezorek J, Go WY (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):25312544. https://doi.org/10.1056/nejmoa1707447

    Article  CAS  Google Scholar 

  5. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, Fleury I, Bachanova V, Foley SR, Ho PJ, Mielke S, Magenau JM, Holte H, Pantano S, Pacaud LB, Awasthi R, Chu J, Anak Ö, Salles G, Maziarz RT (2019) Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 380(1):45–56. https://doi.org/10.1056/nejmoa1804980

    Article  CAS  PubMed  Google Scholar 

  6. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, Deol A, Reagan PM, Stiff P, Flinn IW, Farooq U, Goy A, McSweeney PA, Munoz J, Siddiqi T, Chavez JC, Herrera AF, Bartlett NL, Wiezorek JS, Navale L, Xue A, Jiang Y, Bot A, Rossi JM, Kim JJ, Go WY, Neelapu SS (2019) Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a singlearm, multicentre, phase 1-2 trial. Lancet Oncol 20(1):31–42. https://doi.org/10.1016/S14702045(18)30864-7

    Article  CAS  PubMed  Google Scholar 

  7. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, Sehgal A, Solomon SR, Ghosh N, Albertson TM, Garcia J, Kostic A, Mallaney M, Ogasawara K, Newhall K, Kim Y, Li D, Siddiqi T (2020) Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 396(10254):839–852. https://doi.org/10.1016/S0140-6736(20)31366-0

    Article  PubMed  Google Scholar 

  8. Dromain C, Beigelman C, Pozzessere C, Duran R, Digklia A (2020) Imaging of tumour response to immunotherapy. European Radiology Experimental 4(1). https://doi.org/10.1186/s41747-0190134-1

  9. Aide N, Hicks RJ, Tourneau CL, Lheureux S, Fanti S, Lopci E (2018) FDG PET/CT for assessing tumour response to immunotherapy. Eur J Nucl Med Mol Imaging 46(1):238–250. https://doi.org/10.1007/s00259-018-4171-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhuang H, Pourdehnad E, Lambright E, Yamamoto A, Lanuti M, Li P, Mozley P, Rossman M, Albelda S, Alavi A (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. The Journal of Nuclear Medicine 42(9):1412–1417

    CAS  PubMed  Google Scholar 

  11. Tivnan A, Heilinger T, Lavelle EC, Prehn JH (2017) Advances in immunotherapy for the treatment of glioblastoma. J Neuro-Oncol 131(1):1–9. https://doi.org/10.1007/s11060-016-2299-2

    Article  CAS  Google Scholar 

  12. Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33(31):3541–3543. https://doi.org/10.1200/jco.2015.61.6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bodet-Milin C, Lacombe M, Malard F, Lestang E, Cahu X, Chevallier P, Guillaume T, Delaunay J, Brissot E, Moreau P, Kraeber-Bodere F, Mohty M (2013) 18F-FDG PET/CT for the assessment of gastrointestinal GVHD: results of a pilot study. Bone Marrow Transplant 49(1):131–137. https://doi.org/10.1038/bmt.2013.144

    Article  CAS  PubMed  Google Scholar 

  14. Stelljes M, Hermann S, Albring J, Köhler G, Löffler M, Franzius C, Poremba C, Schlösser V, Volkmann S, Opitz C, Bremer C, Kucharzik T, Silling G, Schober O, Berdel WE, Schäfers M, Kienast J (2008) Clinical molecular imaging in intestinal graft-versushost disease: mapping of disease activity, prediction, and monitoring of treatment efficiency by positron emission tomography. Blood. 111(5):2909–2918. https://doi.org/10.1182/blood-200710-119164

    Article  CAS  PubMed  Google Scholar 

  15. Smeltzer J, Cashen AF, Zhang Q, Abboud CN, DiPersio JF, Stockerl-Goldstein K, Uy GL, Vij R, Westervelt P, Bartlett NL, Fehniger TA (2009) Prognostic significance of PET imaging in relapsed or refractory classical Hodgkin lymphoma treated with salvage chemotherapy and autologous stem cell transplantation. Blood. 114(22):3417–3417. https://doi.org/10.1182/blood.v114.22.3417.3417

    Article  Google Scholar 

  16. Shimabukuro-Vornhagen A, Gödel P, Subklewe M et al (2018) Cytokine release syndrome. J Immunotherapy Cancer 6(56):56. https://doi.org/10.1186/s40425-018-0343-9

    Article  Google Scholar 

  17. Shah NN, Nagle SJ, Torigian DA, Farwell MD, Hwang WT, Frey N, Nasta SD, Landsburg D, Mato A, June CH, Schuster SJ, Porter DL, Svoboda J (2018) Early positron emission tomography/computed tomography as a predictor of response after CTL019 chimeric antigen receptor –T-cell therapy in B-cell non-Hodgkin lymphomas. Cytotherapy. 20(12):1415–1418. https://doi.org/10.1016/j.jcyt.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Zou Y, Ding C, Zhu H, Wang L, Xia Y, Liang J, Fan L, Xu W, Li J (2019) The roles of PET/CT in predicting the prognosis of chimeric antigen receptor T cell therapy treated patients with diffuse large B cell lymphoma. Hematol Oncol 37:504504

    Article  Google Scholar 

  19. Borcoman E, Nandikolla A, Long G, Goel S, Tourneau CL (2018) Patterns of response and progression to immunotherapy. American Society of Clinical Oncology Educational Book 38:169–178. https://doi.org/10.1200/edbk_200643

    Article  PubMed  Google Scholar 

  20. Gallamini A, Barrington SF, Biggi A, Chauvie S, Kostakoglu L, Gregianin M, Meignan M, Mikhaeel GN, Loft A, Zaucha JM, Seymour JF, Hofman MS, Rigacci L, Pulsoni A, Coleman M, Dann EJ, Trentin L, Casasnovas O, Rusconi C, Brice P, Bolis S, Viviani S, Salvi F, Luminari S, Hutchings M (2014) The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 99(6):1107–1113. https://doi.org/10.3324/haematol.2013.103218

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA, Alliance, Australasian Leukaemia and Lymphoma Group, Eastern Cooperative Oncology Group, European Mantle Cell Lymphoma Consortium, Italian Lymphoma Foundation, European Organisation for Research, Treatment of Cancer/Dutch Hemato-Oncology Group, Grupo Español de Médula Ósea, German High-Grade Lymphoma Study Group, German Hodgkin's Study Group, Japanese Lymphorra Study Group, Lymphoma Study Association, NCIC Clinical Trials Group, Nordic Lymphoma Study Group, Southwest Oncology Group, United Kingdom National Cancer Research Institute (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32(27):3059–3068. https://doi.org/10.1200/JCO.2013.54.8800

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jain T, Bar M, Kansagra A, Chong EA, Hashmi SK, Neelapu SS et al (2019) Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant 25(12):23052321–23052321. https://doi.org/10.1016/j.bbmt.2019.08.015

    Article  CAS  Google Scholar 

  23. Schuster SJ, Bartlett NL, Assouline S, et al (2019) Mosunetuzumab induces complete remissions in poor prognosis non-Hodgkin lymphoma patients, including those who are resistant to or relapsing after chimeric antigen receptor T-cell therapies, and is active in treatment through multiple lines. Blood. Volume 134(Supplement_1). Abstract 6. 2019 ASH Annual Meeting. Presented December 8, 2019.

  24. Sellmyer MA, Richman SA, Lohith K, Hou C, Weng CC, Mach RH, O’Connor RS, Milone MC, Farwell MD (2020) Imaging CAR T cell trafficking with eDHFR as a PET reporter gene. Mol Ther 28(1):42–51. https://doi.org/10.1016/j.ymthe.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  25. Minn I, Huss DJ, Ahn HH et al (2019) Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv 5(7):eaaw5096. Published 2019 Jul 3. https://doi.org/10.1126/sciadv.aaw5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emami-Shahri N, Foster J, Kashani R et al (2018) Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-03524-1

  27. Grosser R, Cherkassky L, Chintala N, Adusumilli PS (2019) Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36(5):471–482. https://doi.org/10.1016/j.ccell.2019.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynn RC, Weber EW, Sotillo E, Gennert D, Xu P, Good Z, Anbunathan H, Lattin J, Jones R, Tieu V, Nagaraja S, Granja J, de Bourcy CFA, Majzner R, Satpathy AT, Quake SR, Monje M, Chang HY, Mackall CL (2019) c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 576(7786):293–300. https://doi.org/10.1038/s41586-019-1805-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21(6):581590–581590. https://doi.org/10.1038/nm.3838

    Article  CAS  Google Scholar 

  30. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 543(7643):113–117. https://doi.org/10.1038/nature21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Investig 126(8):3130–3144. https://doi.org/10.1172/jci83092

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R (2018) CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 69(1):301–318. https://doi.org/10.1146/annurev-med-012017-043208

    Article  CAS  PubMed  Google Scholar 

  33. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity. 45(2):374–388. https://doi.org/10.1016/j.immuni.2016.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frank MJ, Hossain NM, Bukhari AA et al (2019) Monitoring ctDNA in r/r DLBCL patients following the CAR T-cell therapy axicabtagene ciloleucel: Day 28 landmark analysis. J Clin Oncol 37(15_suppl):7552–7552. https://doi.org/10.1200/jco.2019.37.15_suppl.7552

    Article  Google Scholar 

Download references

Acknowledgements

MAS is supported by the NIH Office of the Director Early Independence Award (DP5-OD26386), Burroughs Wellcome Fund Career Award for Medical Scientists. Editorial assistance was provided by David A. Mankoff, MD, PhD. Biorender was used to generate figures and schemes.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: A. Ruff, A.R. Pantel, M.D. Farwell, J. Svoboda, and M.A. Sellmyer

Development of methodology: A. Ruff, A.R. Pantel, M.A. Sellmyer

Acquisition of data: A. Ruff, H.J. Ballard, J. Svoboda

Analysis and interpretation of data: A. Ruff, H.J. Ballard, A. Bagg, A.R. Pantel, J. Svoboda, M.A. Sellmyer

Reviewed PET/CT Scans: A. Ruff, A.R. Pantel, M.A. Sellmyer

Writing, review, and/or revision of the manuscript: A. Ruff wrote the initial draft. All authors contributed to the final manuscript.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Ruff, H.J. Ballard

Study supervision: J. Svoboda and M.A. Sellmyer

Corresponding authors

Correspondence to Jakub Svoboda or Mark A. Sellmyer.

Ethics declarations

Conflict of Interest

AR: none. HJB: none. ARP: none. ECN: none. MEH: AstraZeneca, Genzyme, Janssen, AbbVie: consultancy; Acerta Pharma, HOPA: research Support. SDN: Roche, Rafael, Forty Seven, Pharmacyclics, Incyte, Debiopharm, Aileron: research support; Morphosys: honorarium. EAC: Novartis, BMS, KITE: advisory boards. AB: none. MR: BMS, NanoString: consultancy; UPenn/Novartis: patents and royalties; Abclon: consultancy, research funding. MDF: none. JS: Genmab, Adaptive, Imbrium, Atara: consultancy; Incyte, Merck: research funding; AstraZeneca, BMS, Pharmacyclics, Seattle Genetics: consultancy, research funding; TG: research funding. MAS: co-founder of Vellum Biosciences, which is supporting the development and commercialization of radiotracers to monitor gene and cell therapies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruff, A., Ballard, H.J., Pantel, A.R. et al. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Following Chimeric Antigen Receptor T-cell Therapy in Large B-cell Lymphoma. Mol Imaging Biol 23, 818–826 (2021). https://doi.org/10.1007/s11307-021-01627-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01627-8

Key words

Navigation