Skip to main content

Advertisement

Log in

Clinical Applications for Radiotracer Imaging of Lower Extremity Peripheral Arterial Disease and Critical Limb Ischemia

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Peripheral arterial disease (PAD) is an atherosclerotic occlusive disease of the non-coronary vessels that is characterized by lower extremity tissue ischemia, claudication, increased prevalence of lower extremity wounds and amputations, and impaired quality of life. Critical limb ischemia (CLI) represents the severe stage of PAD and is associated with additional risk for wound formation, amputation, and premature death. Standard clinical tools utilized for assessing PAD and CLI primarily focus on anatomical evaluation of peripheral vascular lesions or hemodynamic assessment of the peripheral circulation. Evaluation of underlying pathophysiology has traditionally been achieved by radiotracer-based imaging, with many clinical investigations focusing on imaging of skeletal muscle perfusion and cases of foot infection/inflammation such as osteomyelitis and Charcot neuropathic osteoarthropathy. As advancements in hybrid imaging systems and radiotracers continue to evolve, opportunities for molecular imaging of PAD and CLI are also emerging that may offer novel insight into associated complications such as peripheral atherosclerosis, alterations in skeletal muscle metabolism, and peripheral neuropathy. This review summarizes the pros and cons of radiotracer-based techniques that have been utilized in the clinical environment for evaluating lower extremity ischemia and common pathologies associated with PAD and CLI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hirsch AT, Haskal ZJ, Hertzer NR et al (2006) ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation 113:e463–e654

    Article  PubMed  Google Scholar 

  2. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR (2007) Inter-society consensus for the management of peripheral arterial disease. J Vasc Surg 45:S5–S67

    Article  PubMed  Google Scholar 

  3. Hirsch AT, Criqui MH, Treat-Jacobson DJ et al (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286:1317–1324

    Article  CAS  PubMed  Google Scholar 

  4. Fowkes F, Rudan D, Rudan I et al (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382:1329–1340

    Article  PubMed  Google Scholar 

  5. Global Burden of Disease Study 2013 Collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:743–800

    Article  PubMed Central  Google Scholar 

  6. Stacy MR, Sinusas AJ (2016) Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin 34:167–177

    Article  PubMed  Google Scholar 

  7. Kuwert T, Schillaci O (2014) SPECT/CT: yesterday, today, tomorrow. Clin Transl Imaging 2:443–444

    Article  Google Scholar 

  8. Rischpler C, Woodard PK (2019) PET/CT imaging in cardiovascular imaging. PET Clin 14:233–244

    Article  PubMed  Google Scholar 

  9. Smith BC, Quimby EH (1945) The use of radioactive sodium as a tracer in the study of peripheral vascular disease. Radiology 45:335–346

    Article  CAS  Google Scholar 

  10. Kety S (1949) Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J 38:321–328

    Article  CAS  PubMed  Google Scholar 

  11. Lassen NA (1964) Muscle blood flow in normal man and in patients with intermittent claudication evaluated by simultaneous Xe133 and Na24 clearances. J Clin Invest 43:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lassen NA, Lindberg J, Munck O (1964) Measurement of blood flow through skeletal muscle by intramuscular injection of Xenon-133. Lancet 1:686–689

    Article  CAS  PubMed  Google Scholar 

  13. Jones EL, Wagner HN Jr, Zuidema GD (1965) New method for studying peripheral circulation in man. Arch Surg 91:725–734

    Article  CAS  PubMed  Google Scholar 

  14. Wagner HN Jr, Jones E, Tow DE, Langan JK (1965) A method for the study of the peripheral circulation in man. J Nucl Med 6:150–154

    PubMed  Google Scholar 

  15. Seder JS, Botvinick EH, Rahimtoola SH, Goldstone J, Price DC (1981) Detecting and localizing peripheral arterial disease: assessment of 201Tl scintigraphy. AJR Am J Roentgenol 137:373–380

    Article  CAS  PubMed  Google Scholar 

  16. Siegel ME, Stewart CA (1981) Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study. AJR Am J Roentgenol 136:1179–1183

    Article  CAS  PubMed  Google Scholar 

  17. Hamanaka D, Odori T, Maeda H, Ishii Y, Hayakawa K, Torizuka K (1984) A quantitative assessment of scintigraphy of the legs using 201Tl. Eur J Nucl Med 9:12–16

    Article  CAS  PubMed  Google Scholar 

  18. Duet M, Virally M, Bailliart O et al (2001) Whole-body 201Tl scintigraphy can detect exercise lower limb perfusion abnormalities in asymptomatic diabetic patients with normal Doppler pressure indices. Nucl Med Commun 22:949–954

    Article  CAS  PubMed  Google Scholar 

  19. Cosson E, Paycha F, Tellier P, Sachs RN, Ramadan A, Paries J, Attali JR, Valensi P (2001) Lower-limb vascularization in diabetic patients: assessment by thallium-201 scanning coupled with exercise myocardial scintigraphy. Diabetes Care 24:870–874

    Article  CAS  PubMed  Google Scholar 

  20. Oshima M, Akanabe H, Sakuma S et al (1989) Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography. J Nucl Med 30:458–465

    CAS  PubMed  Google Scholar 

  21. Stacy MR, Yu DY, Maxfield MW, Jaba IM, Jozwik BP, Zhuang ZW, Lin BA, Hawley CL, Caracciolo CM, Pal P, Tirziu D, Sampath S, Sinusas AJ (2014) Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging 7:92–99

    Article  PubMed  Google Scholar 

  22. Kailasnath P, Sinusas AJ (2001) Technetium-99m-labeled myocardial perfusion agents: are they better than thallium-201? Cardiol Rev 9:160–172

    Article  CAS  PubMed  Google Scholar 

  23. Sayman HB, Urgancioglu I (1991) Muscle perfusion with technetium-MIBI in lower extremity peripheral arterial diseases. J Nucl Med 32:1700–1703

    CAS  PubMed  Google Scholar 

  24. Miles KA, Barber RW, Wraight EP et al (1992) Leg muscle scintigraphy with 99mTc-MIBI in the assessment of peripheral vascular (arterial) disease. Nucl Med Commun 13:593–603

    Article  CAS  PubMed  Google Scholar 

  25. Celen YZ, Zincirkeser S, Akdemir I, Yilmaz M (2000) Investigation of perfusion reserve using 99Tcm-MIBI in the lower limbs of diabetic patients. Nucl Med Commun 21:817–822

    Article  CAS  PubMed  Google Scholar 

  26. Kuśmierek J, Dąbrowski J, Bienkiewicz M et al (2006) Radionuclide assessment of lower limb perfusion using 99mTc-MIBI in early stages of atherosclerosis. Nucl Med Rev 9:18–23

    Google Scholar 

  27. Stacy MR, Zhou W, Sinusas AJ (2013) Radiotracer imaging of peripheral vascular disease. J Nucl Med 54:2104–2110

    CAS  PubMed  Google Scholar 

  28. Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, Kumita S, Takano T (2004) Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transpl 13:429–437

    Article  Google Scholar 

  29. Takagi G, Miyamoto M, Fukushima Y, Yasutake M, Tara S, Takagi I, Seki N, Kumita S, Shimizu W (2016) Imaging angiogenesis using 99mTc-MAA scintigraphy in patients with peripheral artery disease. J Nucl Med 57:192–197

    Article  CAS  PubMed  Google Scholar 

  30. Alvelo JL, Papademetris X, Mena-Hurtado C et al (2018) Radiotracer imaging allows for noninvasive detection and quantification of abnormalities in angiosome foot perfusion in diabetic patients with critical limb ischemia and nonhealing wounds. Circ Cardiovasc Imaging 11:e006932

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chou TH, Atway SA, Bobbey AJ, Sarac TP, Go MR, Stacy MR (2019) SPECT/CT imaging: a non-invasive approach for evaluating serial changes in angiosome foot perfusion in critical limb ischemia. Adv Wound Care. https://doi.org/10.1089/wound.2018.0924

  32. Chou TH, Alvelo JL, Papademetris X et al (2018) Radiotracer imaging of serial changes in angiosome foot perfusion in critical limb ischemia patients undergoing lower extremity revascularization: association with 12-month limb salvage outcomes. Arterioscler Thromb Vasc Biol 38:A124

    Google Scholar 

  33. Depairon M, De Landsheere C, Merlo P et al (1988) Effect of exercise on the leg distribution of C15O2 and 15O2 in normals and in patients with peripheral ischemia: a study using positron tomography. Int Angiol 7:254–257

    CAS  PubMed  Google Scholar 

  34. Depairon M, Depresseux J-C, Petermans J, Zicot M (1991) Assessment of flow and oxygen delivery to the lower extremity in arterial insufficiency: a PET-scan study comparison with other methods. Angiology 42:788–795

    Article  CAS  PubMed  Google Scholar 

  35. Burchert W, Schellong S, van den Hoff J et al (1996) Oxygen-15-water PET assessment of muscular blood flow in peripheral vascular disease. J Nucl Med 37:93–98

    Google Scholar 

  36. Schmidt MA, Chakrabarti A, Shamim-Uzzaman Q, Kaciroti N, Koeppe RA, Rajagopalan S (2003) Calf flow reserve with H215O PET as a quantifiable index of lower extremity flow. J Nucl Med 44:915–919

    PubMed  Google Scholar 

  37. Scremin OU, Figoni SF, Norman K, Scremin AME, Kunkel CF, Opava-Rutter D, Schmitter ED, Bert A, Mandelkern M (2010) Preamputation evaluation of lower-limb skeletal muscle perfusion with H215O positron emission tomography. Am J Phys Med Rehabil 89:473–486

    Article  PubMed  Google Scholar 

  38. Fischman AJ, Hsu H, Carter EA, Yu YM, Tompkins RG, Guerrero JL, Young VR, Alpert NM (2002) Regional measurement of canine skeletal muscle blood flow by positron emission tomography with H215O. J Appl Physiol 92:1709–1716

    Article  PubMed  Google Scholar 

  39. Malhotra R, Eng M, Chan CS et al (2014) Osteomyelitis in the diabetic foot. Diabet Foot Ankle 5:24445

    Article  Google Scholar 

  40. Mutluoglu M, Sivrioglu A, Eroglu M et al (2013) The implications of the presence of osteomyelitis on outcomes of infected diabetic foot wounds. Scand J Infect Dis 45:497–503

    Article  PubMed  Google Scholar 

  41. Glaudemans AW, Uçkay I, Lipsky BA (2015) Challenges in diagnosing infection in the diabetic foot. Diabet Med 32:748–759

    Article  CAS  PubMed  Google Scholar 

  42. Lauri C, Tamminga M, Glaudemans AWJM, Juárez Orozco LE, Erba PA, Jutte PC, Lipsky BA, IJzerman MJ, Signore A, Slart RHJA (2017) Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care 40:1111–1120

    Article  PubMed  Google Scholar 

  43. Love C, Palestro CJ (2013) Radionuclide imaging of inflammation and infection in the acute care setting. Semin Nucl Med 43:102–113

    Article  PubMed  Google Scholar 

  44. Keenan A, Tindel N, Alavi A (1989) Diagnosis of pedal osteomyelitis in diabetic patients using current scintigraphic techniques. Arch Intern Med 149:2262–2266

    Article  CAS  PubMed  Google Scholar 

  45. Newman L, Waller J, Palestro C et al (1991) Unsuspected osteomyelitis in diabetic foot ulcers diagnosis and monitoring by leukocyte scanning with indium In 111 oxyquinoline. JAMA 266:1246–1251

    Article  CAS  PubMed  Google Scholar 

  46. Palestro CJ, Caprioli R, Love C, Richardson HL, Kipper SL, Weiland FL, Tomas MB (2003) Rapid diagnosis of pedal osteomyelitis in diabetics with a technetium-99m - labeled monoclonal antigranulocyte antibody. J Foot Ankle Surg 42:2–8

    Article  PubMed  Google Scholar 

  47. Horger M, Martina S, Pfannenberg C et al (2007) Added value of SPECT/CT in patients suspected of having bone infection: preliminary results. Arch Orthop Trauma Surg 127:211–221

    Article  PubMed  Google Scholar 

  48. Heiba SI, Kolker D, Mocherla B, Kapoor K, Jiang M, Son H, Rangaswamy B, Kostakoglu L, Savitch I, DaCosta M, Machac J (2010) The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg 49:529–536

    Article  PubMed  Google Scholar 

  49. Heiba S, Kolker D, Ong L et al (2013) Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Commun 34:877–884

    PubMed  Google Scholar 

  50. Larcos G, Brown ML, Sutton RT (1991) Diagnosis of osteomyelitis of the foot in diabetic patients: value of 111In-leukocyte scintigraphy. AJR Am J Roentgenol 157:527–531

    Article  CAS  PubMed  Google Scholar 

  51. Maurer A, Millmond S, Knight L et al (1986) Infection in diabetic osteoarthropathy: use of indium-labeled leukocytes for diagnosis. Radiology 16:221–225

    Article  Google Scholar 

  52. Johnson J, Kennedy E, Shereff M et al (1996) Prospective study of bone, indium-111-labeled white blood cell, and gallium-67 scanning for the evaluation of osteomyelitis in the diabetic foot. Foot Ankle Int 17:10–16

    Article  CAS  PubMed  Google Scholar 

  53. Bar-shalom R, Yefremov N, Guralnik L et al (2006) SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 47:587–594

    PubMed  Google Scholar 

  54. Harvey J, Cohen MM (1997) Technetium-99-labeled leukocytes in diagnosing diabetic osteomyelitis in the foot. J Foot Ankle Surg 36:209–214

    Article  CAS  PubMed  Google Scholar 

  55. Devillers A, Moisan A, Hennion F, Garin E, Poirier JY, Bourguet P (1998) Contribution of technetium-99m hexamethylpropylene amine oxime labelled leucocyte scintigraphy to the diagnosis of diabetic foot infection. Eur J Nucl Med 25:132–138

    Article  CAS  PubMed  Google Scholar 

  56. Ertugrul M, Baktiroglu S, Salman S et al (2006) The diagnosis of osteomyelitis of the foot in diabetes: microbiological examination vs. magnetic resonance imaging and labelled leucocyte scanning. Diabet Med 23:649–653

    Article  CAS  PubMed  Google Scholar 

  57. Familiari D, Glaudemans AWJM, Vitale V, Prosperi D, Bagni O, Lenza A, Cavallini M, Scopinaro F, Signore A (2011) Can sequential 18F-FDG PET/CT replace WBC imaging in the diabetic foot? J Nucl Med 52:1012–1019

    Article  PubMed  Google Scholar 

  58. Sanlı Y, Ozkan Z, Unal S et al (2011) The additional value of Tc 99m HMPAO white blood cell SPECT in the evaluation of bone and soft tissue infections. Mol Imaging Radionucl Ther 20:7–13

    Article  PubMed  PubMed Central  Google Scholar 

  59. Erdman W, Buethe J, Bhore R et al (2012) Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care 35:1826–1831

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lazaga F, Van Asten SAV, Nichols A et al (2016) Hybrid imaging with 99m Tc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J 13:1158–1160

    Article  PubMed  Google Scholar 

  61. Vouillarmet J, Moret M, Morelec I, Michon P, Dubreuil J (2017) Application of white blood cell SPECT/CT to predict remission after a 6 or 12 week course of antibiotic treatment for diabetic foot osteomyelitis. Diabetologia 60:2486–2494

    Article  PubMed  Google Scholar 

  62. Vouillarmet J, Morelec I, Thivolet C (2014) Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diabet Med 31:1093–1099

    Article  CAS  PubMed  Google Scholar 

  63. Dominguez-Gadea L, Martin-Curto L, de la Calle H, Crespo A (1993) Diabetic foot infections: scintigraphic evaluation with 99Tcm-labelled anti-granulocyte antibodies. Nucl Med Commun 14:212–218

    Article  CAS  PubMed  Google Scholar 

  64. Horger M, Eschmann SM, Pfannenberg C, Storek D, Dammann F, Vonthein R, Claussen CD, Bares R (2003) The value of SPET/CT in chronic osteomyelitis. Eur J Nucl Med Mol Imaging 30:1665–1673

    Article  PubMed  Google Scholar 

  65. Harwood S, Valdivia S, Hung G, Quenzer R (1999) Use of Sulesomab, a radiolabeled antibody fragment, to detect osteomyelitis in diabetic patients with foot ulcers by leukoscintigraphy. Clin Infect Dis 28:1200–1205

    Article  CAS  PubMed  Google Scholar 

  66. Aslangul E, M’Bemba J, Caillat-Vigneron N et al (2013) Diagnosing diabetic foot osteomyelitis in patients without signs of soft tissue infection by coupling hybrid 67Ga SPECT/CT with bedside percutaneous bone puncture. Diabetes Care 36:2203–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Keidar Z, Militianu D, Melamed E et al (2005) The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 46:444–449

    PubMed  Google Scholar 

  68. Kagna O, Srour S, Melamed E, Militianu D, Keidar Z (2012) FDG PET/CT imaging in the diagnosis of osteomyelitis in the diabetic foot. Eur J Nucl Med Mol Imaging 39:1545–1550

    Article  PubMed  Google Scholar 

  69. Schwegler B, Stumpe KDM, Weishaupt D et al (2008) Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB. J Intern Med 263:99–106

    CAS  PubMed  Google Scholar 

  70. Nawaz A, Torigian D, Siegelman E et al (2010) Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol 12:335–342

    Article  PubMed  Google Scholar 

  71. Peterson N, Widnall J, Evans P, Jackson G, Platt S (2017) Diagnostic imaging of diabetic foot disorders. Foot Ankle Int 38:86–95

    Article  PubMed  Google Scholar 

  72. Crerand S, Dolan M, Laing P et al (1996) Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Jt Surg 78:51–55

    Article  CAS  Google Scholar 

  73. Schauwecker DS, Park HM, Burt RW et al (1988) Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease. Eur J Nucl Med Mol Imaging 29:1651–1655

    CAS  Google Scholar 

  74. Poirier J, Garin E, Derrien C et al (2002) Diagnosis of osteomyelitis in the diabetic foot with a 99mTc-HMPAO leucocyte scintigraphy combined with a 99m Tc-MDP bone scintigraphy. Diabetes Metab 28:485–490

    CAS  PubMed  Google Scholar 

  75. Palestro CJ, Mehta HH, Patel M et al (1998) Marrow versus infection in the Charcot joint: indium-111 leukocyte and technetium-99m sulfur colloid scintigraphy. J Nucl Med 39:346–350

    CAS  PubMed  Google Scholar 

  76. Palestro CJ, Roumanas P, Swyer A et al (1992) Diagnosis of musculoskeletal infection using combined In-111 labeled leukocyte and Tc-99m SC marrow imaging. Clin Nucl Med 17:269–273

    Article  CAS  PubMed  Google Scholar 

  77. Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN (2006) Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 26:859–870

    Article  PubMed  Google Scholar 

  78. Basu S, Chryssikos T, Houseni M, Scot Malay D, Shah J, Zhuang H, Alavi A (2007) Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot’s neuroarthropathy from osteomyelitis and soft-tissue infection? Nucl Med Commun 28:465–472

    Article  PubMed  Google Scholar 

  79. Höpfner S, Krolak C, Kessler S, Tiling R, Brinkbäumer K, Hahn K, Dresel S (2004) Preoperative imaging of charcot neuroarthropathy in diabetic patients: comparison of ring PET, hybrid PET, and magnetic resonance imaging. Foot Ankle Int 25:890–895

    Article  PubMed  Google Scholar 

  80. Rastogi A, Bhattacharya A, Prakash M, Sharma S, Mittal BR, Khandelwal N, Bhansali A (2016) Utility of PET/CT with fluorine-18-fluorodeoxyglucose-labeled autologous leukocytes for diagnosing diabetic foot osteomyelitis in patients with Charcot’s neuroarthropathy. Nucl Med Commun 37:1253–1259

    Article  CAS  PubMed  Google Scholar 

  81. Pickwell K, van Kroonenburgh M, Weijers R et al (2011) F-18 FDG PET/CT scanning in Charcot disease: a brief report. Clin Nucl Med 36:8–10

    Article  PubMed  Google Scholar 

  82. Ruotolo V, Di Pietro B, Giurato L et al (2013) A new natural history of Charcot foot: clinical evolution and final outcome of stage 0 Charcot neuroarthropathy in a tertiary referral diabetic foot clinic. Clin Nucl Med 38:506–509

    Article  PubMed  Google Scholar 

  83. Yun M, Yeh D, Araujo LI, et al. (2001) F-18 FDG uptake in the large arteries. A new observation. Clin Nucl Med 26:314–319

  84. Bural GG, Torigian DA, Chamroonrat W, Houseni M, Chen W, Basu S, Kumar R, Alavi A (2008) FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 35:562–569

    Article  PubMed  Google Scholar 

  85. Pasha AK, Moghbel M, Saboury B, Gharavi MH, Blomberg BA, Torigian DA, Kwee TC, Basu S, Mohler Iii ER, Alavi A (2015) Effects of age and cardiovascular risk factors on 18F-FDG PET/CT quantification of atherosclerosis in the aorta and peripheral arteries. Hell J Nucl Med 18:5–10

    PubMed  Google Scholar 

  86. Bural GG, Torigian D, Rubello D, Alavi A (2016) Atherosclerotic 18F-FDG and MDP uptake in femoral arteries, changes with age. Nucl Med Commun 37:833–836

    Article  CAS  PubMed  Google Scholar 

  87. De Boer SA, Hovinga-De Boer MC, Heerspink HJL et al (2016) Arterial stiffness is positively associated with 18F-fluorodeoxyglucose positron emission tomography-assessed subclinical vascular inflammation in people with early type 2 diabetes. Diabetes Care 39:1440–1447

    Article  CAS  PubMed  Google Scholar 

  88. Lee SJ, On YK, Lee EJ, Choi JY, Kim BT, Lee KH (2008) Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 49:1277–1282

    Article  CAS  PubMed  Google Scholar 

  89. Ishii H, Nishio M, Takahashi H, Aoyama T, Tanaka M, Toriyama T, Tamaki T, Yoshikawa D, Hayashi M, Amano T (2010) Comparison of Atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded,open-label, 6-month study in japanese adults scheduled. Clin Ther 32:2337–2347

  90. Derlin T, Habermann CR, Lengyel Z, Busch JD, Wisotzki C, Mester J, Pavics L (2011) Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med 52:1848–1854

    Article  CAS  PubMed  Google Scholar 

  91. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, Klutmann S (2010) Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 51:862–865

    Article  PubMed  Google Scholar 

  92. Janssen T, Bannas P, Herrmann J, Veldhoen S, Busch JD, Treszl A, Münster S, Mester J, Derlin T (2013) Association of linear 18F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J Nucl Cardiol 20:569–577

    Article  PubMed  Google Scholar 

  93. Tack CJ, van Gurp PJ, Holmes C, Goldstein DS (2002) Local sympathetic denervation in painful diabetic neuropathy. Diabetes 51:3545–3553

    Article  CAS  PubMed  Google Scholar 

  94. Pande RL, Park M-A, Perlstein TS, Desai AS, Doyle J, Navarrete N, Copeland-Halperin RS, Redline W, di Carli MF, Creager MA (2011) Impaired skeletal muscle glucose uptake by [18F]Fluorodeoxyglucose-positron emission tomography in patients with peripheral artery disease and intermitten claudication. Arterioscler Thromb Vasc Biol 31:190–196

    Article  CAS  PubMed  Google Scholar 

  95. Marre F, Sibille L, Nalda E, Kotzki PO, Boudousq V (2013) 18F-FDG PET/CT imaging of critical ischemia in the diabetic foot. Clin Nucl Med 38:269–271

    Article  PubMed  Google Scholar 

  96. Love C, Palestro CJ (2004) Radionuclide imaging of infection. J Nucl Med Technol 32:47–49

    PubMed  Google Scholar 

  97. Ando A, Nitta K, Ando I, Sanada S, Katsuda S, Tonami N, Hiraki T, Hisada K, Ogawa H (1990) Mechanism of gallium 67 accumulation in inflammatory tissue. Eur J Nucl Med 17:21–27

    Article  CAS  PubMed  Google Scholar 

  98. Signore A, Glaudemans A (2011) The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med 25:681–700

    Article  PubMed  Google Scholar 

  99. Dodd A, Daniels TR (2018) Charcot neuroarthropathy of the foot and ankle. J Bone Jt Surg 100:696–711

    Article  Google Scholar 

  100. Ergen FB, Sanverdi SE, Oznur A (2013) Charcot foot in diabetes and an update on imaging. Diabet Foot Ankle 4:1–8

    Article  Google Scholar 

  101. Ledermann H, Morrison W (2005) Differential diagnosis of pedal osteomyelitis and diabetic neuroarthropathy: MR imaging. Semin Musculoskelet Radiol 9:272–283

    Article  PubMed  Google Scholar 

  102. Lipman BT, David Collier B, Carrera GF et al (1998) Detection of osteomyelitis in the neuropathic foot: nuclear medicine, MRI, and conventional radiography. Clin Nucl Med 23:77–82

    Article  CAS  PubMed  Google Scholar 

  103. Stacy MR (2019) Radionuclide imaging of atherothrombotic diseases. Curr Cardiovasc Imaging Rep 12: pii:17

  104. Stacy MR, Paeng JC, Sinusas AJ (2015) The role of molecular imaging in the evaluation of myocardial and peripheral angiogenesis. Ann Nucl Med 29:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health [Grant R01 HL135103].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchel R. Stacy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, TH., Stacy, M.R. Clinical Applications for Radiotracer Imaging of Lower Extremity Peripheral Arterial Disease and Critical Limb Ischemia. Mol Imaging Biol 22, 245–255 (2020). https://doi.org/10.1007/s11307-019-01425-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01425-3

Key words

Navigation