Skip to main content

Advertisement

Log in

Preoperative Prediction of Extracapsular Extension: Radiomics Signature Based on Magnetic Resonance Imaging to Stage Prostate Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To investigate and validate the potential role of a radiomics signature in predicting the side-specific probability of extracapsular extension (ECE) of prostate cancer (PCa).

Procedures

The preoperative magnetic resonance imaging data of 238 prostatic samples from 119 enrolled PCa patients were retrospectively assessed. The samples with were randomized in a two-to-one ratio into training (n = 74) and validation (n = 45) datasets. The radiomics features were derived from T2-weighted images (T2WIs). The optimal radiomics features were identified from the least absolute shrinkage and selection operator (LASSO) logistic regression model and were used to construct a predictive radiomics signature via dimension reduction and selection approaches. The association between the radiomics signatures and pathological ECE status was explored. Receiver operating characteristic (ROC) analysis was used to assess the discriminatory ability of the signature. The calibration performance and clinical usefulness of the radiomics signature were subsequently assessed by calibration curve and decision curve analyses.

Results

The proposed radiomics signature that incorporated 17 selected radiomics features was significantly associated with pathological ECE outcomes (P < 0.001) in both the training and validation datasets. The constructed model displayed good discrimination, with areas under the curve (AUC) of 0.906 (95 % confidence interval (CI), 0.847, 0.948) and 0.821 (95 % CI, 0.726, 0.894) for the training and validation datasets, respectively, and had a good calibration performance. The clinical utility of this model was confirmed through decision curve analysis.

Conclusions

The radiomics signature based on T2WIs showed the potential to predict the side-specific probability of pathological ECE status and can facilitate the preoperative individualized predictions for PCa patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Boehmer D, Maingon P, Poortmans P, Baron MH, Miralbell R, Remouchamps V, Scrase C, Bossi A, Bolla M, EORTC radiation oncology group (2006) Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol 79:259–269

    PubMed  Google Scholar 

  2. Roethke MC, Lichy MP, Kniess M, Werner MK, Claussen CD, Stenzl A, Schlemmer HP, Schilling D (2013) Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J Urol 31:1111–1116

    PubMed  Google Scholar 

  3. Cooperberg MR, Lubeck DP, Mehta SS, Carroll PR (2003) Time trends in clinical risk stratification for prostate cancer: implications for outcomes (data from CaPSURE). J Urol 170:S21–S25 discussion S26-27

    PubMed  Google Scholar 

  4. Han M, Partin AW, Piantadosi S, Epstein JI, Walsh PC (2001) Era specific biochemical recurrence-free survival following radical prostatectomy for clinically localized prostate cancer. J Urol 166:416–419

    CAS  PubMed  Google Scholar 

  5. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M, Epstein JI, Walsh PC, Trock BJ, Partin AW (2013) An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int 111:22–29

    PubMed  Google Scholar 

  6. Center MSKC. Prostate cancer nomograms: pre-radical prostatectomy. https:// www.mskcc.org/nomograms/prostate/pre_op. Accessed 14 July 2019

  7. Cerantola Y, Valerio M, Kawkabani Marchini A, Meuwly JY, Jichlinski P (2013) Can 3T multiparametric magnetic resonance imaging accurately detect prostate cancer extracapsular extension? Can Urol Assoc J 7:E699–E703

    PubMed  PubMed Central  Google Scholar 

  8. Feng TS, Sharif-Afshar AR, Smith SC et al (2015) Multiparametric magnetic resonance imaging localizes established extracapsular extension of prostate cancer. Urol Oncol 33:109.e115–109.e122

    Google Scholar 

  9. Freifeld Y, Diaz de Leon A, Xi Y, Pedrosa I, Roehrborn CG, Lotan Y, Francis F, Costa DN (2019) Diagnostic performance of prospectively assigned Likert scale scores to determine extraprostatic extension and seminal vesicle invasion with multiparametric MRI of the prostate. AJR Am J Roentgenol 212:576–581

    PubMed  Google Scholar 

  10. Gupta RT, Faridi KF, Singh AA, Passoni NM, Garcia-Reyes K, Madden JF, Polascik TJ (2014) Comparing 3-T multiparametric MRI and the Partin tables to predict organ-confined prostate cancer after radical prostatectomy. Urol Oncol 32:1292–1299

    PubMed  Google Scholar 

  11. Augustin H, Fritz GA, Ehammer T, Auprich M, Pummer K (2009) Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the Partin tables. Acta Radiol 50:562–569

    CAS  PubMed  Google Scholar 

  12. de Rooij M, Hamoen EH, Witjes JA et al (2016) Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol 70:233–245

    PubMed  Google Scholar 

  13. Ruprecht O, Weisser P, Bodelle B, Ackermann H, Vogl TJ (2012) MRI of the prostate: interobserver agreement compared with histopathologic outcome after radical prostatectomy. Eur J Radiol 81:456–460

    PubMed  Google Scholar 

  14. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S (2016) PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69:16–40

    PubMed  Google Scholar 

  15. Nketiah G, Elschot M, Kim E, Teruel JR, Scheenen TW, Bathen TF, Selnæs KM (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol 27:3050–3059

    PubMed  Google Scholar 

  16. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, Reuter VE, Eastham J, Sala E, Vargas HA (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25:2840–2850

    PubMed  PubMed Central  Google Scholar 

  17. Ma S, Xu K, Xie H, Wang H, Wang R, Zhang X, Wei J, Wang X (2018) Diagnostic efficacy of b value (2000 s/mm(2)) diffusion-weighted imaging for prostate cancer: comparison of a reduced field of view sequence and a conventional technique. Eur J Radiol 107:125–133

    PubMed  Google Scholar 

  18. Chaddad A, Kucharczyk MJ, Niazi T (2018) Multimodal radiomic features for the predicting Gleason score of prostate cancer. Cancers (Basel) 10:E249

    Google Scholar 

  19. Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B (2018) Predicting Gleason score of prostate cancer patients using radiomic analysis. Front Oncol 8:630

    PubMed  PubMed Central  Google Scholar 

  20. Khalvati F, Zhang J, Chung AG, Shafiee MJ, Wong A, Haider MA (2018) MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection. BMC Med Imaging 18:16

    PubMed  PubMed Central  Google Scholar 

  21. Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A, Trattnig S (2009) Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys 36:1236–1243

    PubMed  Google Scholar 

  22. Baessler B, Weiss K, Pinto Dos Santos D (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Investig Radiol 54:221–228

    Google Scholar 

  23. Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91

    CAS  PubMed  Google Scholar 

  24. Bostwick DG, Montironi M (1997) Evaluating radical prostatectomy specimens: therapeutic and prognostic importance. Virchows Arch 430:1–16

    CAS  PubMed  Google Scholar 

  25. Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL (2005) The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 29:1228–1242

    PubMed  Google Scholar 

  26. Magi-Galluzzi C, Evans AJ, Delahunt B et al (2011) International Society of Urological Pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol 24:26–38

    PubMed  Google Scholar 

  27. Vallieres M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496

    CAS  PubMed  Google Scholar 

  28. Park HJ, Lee SS, Park B, Yun J, Sung YS, Shim WH, Shin YM, Kim SY, Lee SJ, Lee MG (2019) Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology 290:380–387

    PubMed  Google Scholar 

  29. Sauerbrei W, Royston P, Binder H (2007) Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 26:5512–5528

    PubMed  Google Scholar 

  30. Kramer AA, Zimmerman JE (2007) Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med 35:2052–2056

    PubMed  Google Scholar 

  31. Steyerberg EW, Vickers AJ (2008) Decision curve analysis: a discussion. Med Decis Mak 28:146–149

    Google Scholar 

  32. Vickers AJ, Cronin AM, Elkin EB, Gonen M (2008) Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak 8:53

    PubMed  PubMed Central  Google Scholar 

  33. Bolla M, van Poppel H, Tombal B, Vekemans K, da Pozzo L, de Reijke TM, Verbaeys A, Bosset JF, van Velthoven R, Colombel M, van de Beek C, Verhagen P, van den Bergh A, Sternberg C, Gasser T, van Tienhoven G, Scalliet P, Haustermans K, Collette L (2012) Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet 380:2018–2027

    PubMed  Google Scholar 

  34. Cooperberg MR, Pasta DJ, Elkin EP et al (2005) The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol 173:1938–1942

    PubMed  PubMed Central  Google Scholar 

  35. Feng TS, Sharif-Afshar AR, Wu J, Li Q, Luthringer D, Saouaf R, Kim HL (2015) Multiparametric MRI improves accuracy of clinical nomograms for predicting extracapsular extension of prostate cancer. Urology 86:332–337

    PubMed  Google Scholar 

  36. Morlacco A, Sharma V, Viers BR, Rangel LJ, Carlson RE, Froemming AT, Karnes RJ (2017) The incremental role of magnetic resonance imaging for prostate cancer staging before radical prostatectomy. Eur Urol 71:701–704

    PubMed  Google Scholar 

  37. Sighinolfi MC, Sandri M, Torricelli P, Ligabue G, Fiocchi F, Scialpi M, Eissa A, Reggiani Bonetti L, Puliatti S, Bianchi G, Rocco B (2019) External validation of a novel side-specific, multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension of prostate cancer: preliminary outcomes on a series diagnosed with mpMRI targeted plus systematic saturation biopsy. BJU Int. https://doi.org/10.1111/bju.14665

    PubMed  Google Scholar 

  38. Somford DM, Hamoen EH, Futterer JJ et al (2013) The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol 190:1728–1734

    CAS  PubMed  Google Scholar 

  39. Xie H, Zhang X, Ma S, Liu Y, Wang X (2019) Preoperative differentiation of uterine sarcoma from leiomyoma: comparison of three models based on different segmentation volumes using radiomics. Mol Imaging Biol. https://doi.org/10.1007/s11307-019-01332-7

    PubMed  Google Scholar 

  40. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, Ma ZL, Liu ZY (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164

    PubMed  Google Scholar 

  41. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, Sala E, Hricak H, Deasy JO (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci U S A 112:E6265–E6273

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Wu CJ, Bao ML, Zhang J, Wang XN, Zhang YD (2017) Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur Radiol 27:4082–4090

    PubMed  Google Scholar 

  44. Ma S, Xie H, Wang H, Han C, Yang J, Lin Z, Li Y, He Q, Wang R, Cui Y, Zhang X, Wang X (2019) MRI-based radiomics signature for the preoperative prediction of extracapsular extension of prostate cancer. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26777

    PubMed  Google Scholar 

  45. Hepp T, Schmid M, Gefeller O, Waldmann E, Mayr A (2016) Approaches to regularized regression—a comparison between gradient boosting and the lasso. Methods Inf Med 55:422–430

    PubMed  Google Scholar 

  46. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, Rodriguez-Rivera E, Dodge C, Jones AK, Court L (2015) Measuring computed tomography scanner variability of radiomics features. Investig Radiol 50:757–765

    Google Scholar 

  47. Ren J, Tian J, Yuan Y, Dong D, Li X, Shi Y, Tao X (2018) Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma. Eur J Radiol 106:1–6

    PubMed  Google Scholar 

  48. Chen T, Li M, Gu Y et al (2018) Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26243

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by the Interdisciplinary Clinical Research Project of Peking University First Hospital (grant number 2017CR21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Xie, H., Wang, H. et al. Preoperative Prediction of Extracapsular Extension: Radiomics Signature Based on Magnetic Resonance Imaging to Stage Prostate Cancer. Mol Imaging Biol 22, 711–721 (2020). https://doi.org/10.1007/s11307-019-01405-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01405-7

Key words

Navigation