Skip to main content

Advertisement

Log in

Predicting Glioblastoma Response to Bevacizumab Through MRI Biomarkers of the Tumor Microenvironment

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GB) is one of the most vascularized of all solid tumors and, therefore, represents an attractive target for antiangiogenic therapies. Many lesions, however, quickly develop escape mechanisms associated with changes in the tumor microenvironment (TME) resulting in rapid treatment failure. To prevent patients from adverse effects of ineffective therapy, there is a strong need to better predict and monitor antiangiogenic treatment response.

Procedures

We utilized a novel physiological magnetic resonance imaging (MRI) method combining the visualization of oxygen metabolism and neovascularization for classification of five different TME compartments: necrosis, hypoxia with/without neovascularization, oxidative phosphorylation, and aerobic glycolysis. This approach, termed TME mapping, was used to monitor changes in tumor biology and pathophysiology within the TME in response to bevacizumab treatment in 18 patients with recurrent GB.

Results

We detected dramatic changes in the TME by rearrangement of its compartments after the onset of bevacizumab treatment. All patients showed a decrease in active tumor volume and neovascularization as well as an increase in hypoxia and necrosis in the first follow-up after 3 months. We found that recurrent GB with a high percentage of neovascularization and active tumor before bevacizumab onset showed a poor or no treatment response.

Conclusions

TME mapping might be useful to develop strategies for patient stratification and response prediction before bevacizumab onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Jayaram S, Gupta MK, Polisetty RV, Cho WCS, Sirdeshmukh R (2014) Towards developing biomarkers for glioblastoma multiforme: a proteomics view. Expert Rev Proteomic 11:621–639

    Article  CAS  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent M, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  3. Vidiri A, Pace A, Fabi A, Maschio M, Latagliata G, Anelli V, Piludu F, Carapella C, Giovinazzo G, Marzi S (2012) Early perfusion changes in patients with recurrent high-grade brain tumor treated with bevacizumab: preliminary results by a quantitative evaluation. J Exp Clin Cancer Res 31:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SAA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 108:3749–3754

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745

    Article  CAS  PubMed  Google Scholar 

  6. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) Mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Port RE, Bernstein LJ, Barboriak DP, Xu L, Roberts TP, van Bruggen N (2010) Noncompartmental kinetic analysis of DCE-MRI data from malignant tumors: application to glioblastoma treated with bevacizumab. Magn Reson Med 64:408–417

    CAS  PubMed  Google Scholar 

  9. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  10. Ellingson BM, Wen PY, Cloughesy TF (2017) Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14:307–320

    Article  PubMed  PubMed Central  Google Scholar 

  11. Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, Phan P, Ross A, Kesari S, Wen PY (2009) An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neuro-Oncol 92:149–155

    Article  CAS  Google Scholar 

  12. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WKA, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740

    Article  CAS  PubMed  Google Scholar 

  13. Sathornsumetee S, Cao Y, Marcello JE, Herndon JE II, McLendon RE, Desjardins A, Friedman HS, Dewhirst MW, Vredenburgh JJ, Rich JN (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26:271–278

    Article  CAS  PubMed  Google Scholar 

  14. Ebos JML, Lee CR, Kerbel RS (2009) Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 15:5020–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Groot JF, Fuller G, Kumar AJ et al (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro-Oncology 12:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, Mittelbronn M, Bähr O, Weyerbrock A, Stuhr L, Miletic H, Sakariassen PØ, Stieber D, Rygh CB, Lund-Johansen M, Zheng L, Gottlieb E, Niclou SP, Bjerkvig R (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 129:115–131. https://doi.org/10.1007/s00401-014-1352-5

    Article  CAS  PubMed  Google Scholar 

  18. Hambardzumyan D, Bergers G (2015) Glioblastoma: defining tumor niches. Trends Cancer 1:252–265

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    Article  CAS  PubMed  Google Scholar 

  22. Gillies RJ, Verduzco D, Gatenby RA (2012) Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer 12:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    Article  CAS  PubMed  Google Scholar 

  24. Stadlbauer A, Zimmermann M, Doerfler A et al (2018) Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. Neuro Oncol. https://doi.org/10.1093/neuonc/noy066

  25. Stadlbauer A, Zimmermann M, Oberndorfer S et al (2017) Vascular hysteresis loops and vascular architecture mapping in patients with glioblastoma treated with antiangiogenic therapy. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  26. Stadlbauer A, Zimmermann M, Kitzwögerer M, Oberndorfer S, Rössler K, Dörfler A, Buchfelder M, Heinz G (2017) MR imaging–derived oxygen metabolism and neovascularization characterization for grading and IDH gene mutation detection of gliomas. Radiology 283:799–809

    Article  PubMed  Google Scholar 

  27. Stadlbauer A, Zimmermann M, Heinz G, Oberndorfer S, Doerfler A, Buchfelder M, Rössler K (2017) Magnetic resonance imaging biomarkers for clinical routine assessment of microvascular architecture in glioma. J Cereb Blood Flow Metab 37:632–643

    Article  PubMed  Google Scholar 

  28. Prasloski T, Mädler B, Xiang QS, MacKay A, Jones C (2012) Applications of stimulated echo correction to multicomponent T2 analysis. Magn Reson Med 67:1803–1814

    Article  PubMed  Google Scholar 

  29. Smith AM, Grandin CB, Duprez T et al (2000) Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 12:400–410

    Article  CAS  PubMed  Google Scholar 

  30. Bjornerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J Cereb Blood Flow Metab 30:1066–1078

    Article  PubMed  PubMed Central  Google Scholar 

  31. Christen T, Schmiedeskamp H, Straka M, Bammer R, Zaharchuk G (2012) Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach. Magn Reson Med 68:905–911

    Article  PubMed  Google Scholar 

  32. Gjedde A (2002) Cerebral blood flow change in arterial hypoxemia is consistent with negligible oxygen tension in brain mitochondria. Neuroimage 17:1876–1881

    Article  PubMed  Google Scholar 

  33. Vafaee MS, Vang K, Bergersen LH, Gjedde A (2012) Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping: implication for a role of lactate. J Cereb Blood Flow Metab 32:1859–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Boxerman JL, Prah DE, Paulson ES, Machan JT, Bedekar D, Schmainda KM (2012) The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. Am J Neuroradiol 33:1081–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ducreux D, Buvat I, Meder JF, Mikulis D, Crawley A, Fredy D, TerBrugge K, Lasjaunias P, Bittoun J (2006) Perfusion-weighted MR imaging studies in brain hypervascular diseases: comparison of arterial input function extractions for perfusion measurement. AJNR Am J Neuroradiol 27:1059–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu C, Kiselev VG, Möller HE, Fiebach JB (2013) Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging. Magn Reson Med 69:981–991

    Article  PubMed  Google Scholar 

  38. Jensen JH, Lu H, Inglese M (2006) Microvessel density estimation in the human brain by means of dynamic contrast-enhanced echo-planar imaging. Magn Reson Med 56:1145–1150

    Article  PubMed  Google Scholar 

  39. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  CAS  PubMed  Google Scholar 

  40. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124:763–775

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arrillaga-Romany I, Reardon DA, Wen PY (2014) Current status of antiangiogenic therapies for glioblastomas. Expert Opin Investig Drugs 23:199–210

    Article  CAS  PubMed  Google Scholar 

  42. Hamans B, Navis AC, Wright A, Wesseling P, Heerschap A, Leenders W (2013) Multivoxel1h mr spectroscopy is superior to contrast-enhanced MRI for response assessment after anti-Angiogenic treatment of orthotopic human glioma xenografts and provides handles for metabolic targeting. Neuro-Oncology 15:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Demeure K, Fack F, Duriez E, Tiemann K, Bernard A, Golebiewska A, Bougnaud S, Bjerkvig R, Domon B, Niclou SP (2016) Targeted proteomics to assess the response to anti-angiogenic treatment in human glioblastoma (GBM). Mol Cell Proteomics 15:481–492

    Article  CAS  PubMed  Google Scholar 

  44. Najafi M, Soltanian-Zadeh H, Jafari-Khouzani K, Scarpace L, Mikkelsen T (2012) Prediction of glioblastoma multiform response to bevacizumab treatment using multi-parametric MRI. PLoS One 7:e29945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nowosielski M, Recheis W, Goebel G, Güler Ö, Tinkhauser G, Kostron H, Schocke M, Gotwald T, Stockhammer G, Hutterer M (2011) ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma. Neuroradiology 53:291–302

    Article  PubMed  Google Scholar 

  46. Rahman R, Hamdan A, Zweifler R, Jiang H, Norden AD, Reardon DA, Mukundan S, Wen PY, Huang RY (2014) Histogram analysis of apparent diffusion coefficient within enhancing and nonenhancing tumor volumes in recurrent glioblastoma patients treated with bevacizumab. J Neuro-Oncol 119:149–158

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft—DFG; Grant Numbers STA 1331/3-1 and DO 721/9-1) and by the ELAN program (Erlanger Leistungsbezogene Anschubfinanzierung und Nachwuchsförderung; Grant Number 14-05-21-1-Stadlbauer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stadlbauer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadlbauer, A., Roessler, K., Zimmermann, M. et al. Predicting Glioblastoma Response to Bevacizumab Through MRI Biomarkers of the Tumor Microenvironment. Mol Imaging Biol 21, 747–757 (2019). https://doi.org/10.1007/s11307-018-1289-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1289-5

Key words

Navigation