Skip to main content
Log in

An Innovation for Treating Orthotopic Pancreatic Cancer by Preoperative Screening and Imaging-Guided Surgery

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic cancer is still associated with a poor outcome and low patient quality of life, which are mainly attributed to the late detection and requirement of distal pancreatectomy with extended resection of pancreatic tumors. Therefore, novel strategies for early screening and precise tumor resection are urgently needed. In this study, we evaluated the feasibility of a low-density lipoprotein receptor (LDLR)-targeted small-molecule contrast agent (peptide-22-Cy7) for early screening with photoacoustic tomography and near-infrared (NIR) imaging as guided surgical navigation to achieve precise resection.

Procedure

Normal pancreatic cells (HPDE6-C7) and cancer cells (PANC-1) were respectively used in the in vitro targeting evaluations. The ability of peptide-22-Cy7 for preoperative in vivo pancreatic tumor detection was investigated in a mouse orthotopic pancreatic cancer model (n = 10) using photoacoustic tomography; 18 tumor-bearing mice were further divided into three groups for different treatments. After intravenous injection of peptide-22-Cy7, surgical navigation was conducted through laparotomy. Histopathological analysis was used to further confirm the tumor area and the state of surgical margins.

Results

Flow cytometry demonstrated that peptide-22 is highly specific to pancreatic cancer cells, with a fluorescence intensity of approximately 87.3 %. Orthotopic pancreatic tumors with a size of 4 mm could be accurately detected by photoacoustic tomography. Surgical navigation effectively achieved R0 resection and minimized the range of resection, which led to increased body weight of the mice following surgery.

Conclusion

Overall, our newly developed targeted contrast agent facilitated the accurate positioning and resection of pancreatic tumors. Photoacoustic tomography and optical imaging-guided surgical navigation may be a novel direction for improving the survival, quality of life, and disease management of pancreatic cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet 388:73–85

    Article  CAS  PubMed  Google Scholar 

  2. Michl P, Gress TM (2013) Current concepts and novel targets in advanced pancreatic cancer. Gut 62:317–326

    Article  CAS  PubMed  Google Scholar 

  3. Gillen S, Schuster T, Zum Buschenfelde CM et al (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7:e1000267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. England CG, Hernandez R, Eddine SBZ, Cai W (2016) Molecular imaging of pancreatic cancer with antibodies. Mol Pharm 13:8–24

    Article  CAS  PubMed  Google Scholar 

  5. Dimastromatteo J, Brentnall T, Kelly KA (2017) Imaging in pancreatic disease. Nat Rev Gastroenterol Hepatol 14:97–109

    Article  CAS  PubMed  Google Scholar 

  6. McNally LR, Mezera M, Morgan DE et al (2016) Current and emerging clinical applications of multispectral optoacoustic tomography (MSOT) in oncology. Clin Cancer Res 22:3432–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan H, Zhao LY, Shang WT, Liu Z, Xie W, Qiang C, Xiong Z, Zhang R, Li B, Sun X, Kang F (2017) General synthesis of high-performing magneto-conjugated polymer core-shell nanoparticles for multifunctional theranostics. Nano Res 10:704–717

    Article  CAS  Google Scholar 

  8. Hartwig W, Werner J, Jager D et al (2013) Improvement of surgical results for pancreatic cancer. Lancet Oncol 14:E476–E485

    Article  PubMed  Google Scholar 

  9. Nitschke P, Volk A, Welsch T, Hackl J, Reissfelder C, Rahbari M, Distler M, Saeger HD, Weitz J, Rahbari NN (2017) Impact of intraoperative re-resection to achieve R0 status on survival in patients with pancreatic cancer: a single-center experience with 483 patients. Ann Surg 265:1219–1225

    Article  PubMed  Google Scholar 

  10. Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat Rev Cancer 13:653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Halbrook CJ, Lyssiotis CA (2017) Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 31:5–19

    Article  CAS  PubMed  Google Scholar 

  12. Liu QP, Luo Q, Halim A, Song G (2017) Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett 401:39–45

    Article  CAS  Google Scholar 

  13. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogene 5:e189. https://doi.org/10.1038/oncsis.2015.49

    Article  CAS  Google Scholar 

  14. Huang JF, Li L, Lian JH, Schauer S, Vesely PW, Kratky D, Hoefler G, Lehner R (2016) Tumor-induced hyperlipidemia contributes to tumor growth. Cell Rep 15:336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malcor JD, Payrot N, David M, Faucon A, Abouzid K, Jacquot G, Floquet N, Debarbieux F, Rougon G, Martinez J, Khrestchatisky M, Vlieghe P, Lisowski V (2012) Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem 55:2227–2241

    Article  CAS  PubMed  Google Scholar 

  16. Zhang B, Sun XY, Mei H, Wang Y, Liao Z, Chen J, Zhang Q, Hu Y, Pang Z, Jiang X (2013) LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 34:9171–9182

    Article  CAS  PubMed  Google Scholar 

  17. de Rooij T, Lu MZ, Steen W et al (2016) Minimally invasive versus open pancreatoduodenectomy systematic review and meta-analysis of comparative cohort and registry studies. Ann Surg 264:257–267

    Article  PubMed  Google Scholar 

  18. Chi C, Du Y, Ye J et al (2014) Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 4:1072–1084

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gerling M, Zhao Y, Nania S, Norberg KJ, Verbeke CS, Englert B, Kuiper RV, Bergström Å, Hassan M, Neesse A, Löhr JM, Heuchel RL (2014) Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound. Theranostics 4:604–613

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227

    Article  CAS  Google Scholar 

  21. Sreejith S, Joseph J, Lin MJ, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SWK, Zhao Y (2015) Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 9:5695–5704

    Article  CAS  PubMed  Google Scholar 

  22. Xia J, Yao JJ, Wang LV (2014) Photoacoustic tomography: principles and advances. Prog Electromagn Res 147:1–22

    Article  Google Scholar 

  23. Lai PX, Wang LD, Tay JW, Wang LV (2015) Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat Photonics 9:126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, Borge L, Roques J, Gayet O, Pinault M, Guimaraes C, Nigri J, Loncle C, Lavaut MN, Garcia S, Tailleux A, Staels B, Calvo E, Tomasini R, Iovanna JL, Vasseur S (2015) Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 112:2473–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michalopoulou E, Bulusu V, Kamphorst JJ (2016) Metabolic scavenging by cancer cells: when the going gets tough, the tough keep eating. Br J Cancer 115:635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK (2016) Selecting tumor-specific molecular targets in pancreatic adenocarcinoma: paving the way for image-guided pancreatic surgery. Mol Imaging Biol 18:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adiseshaiah PP, Crist RM, Hook SS, McNeil SE (2016) Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 13:750–765

    Article  CAS  PubMed  Google Scholar 

  28. Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y, Li J, di Y, Fu D (2012) Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 38:566–579

    Article  CAS  PubMed  Google Scholar 

  29. Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, Terwisscha van Scheltinga AGT, Jansen L, de Vries J, Lub-de Hooge MN, Schröder CP, Jorritsma-Smit A, Linssen MD, de Boer E, van der Vegt B, Nagengast WB, Elias SG, Oliveira S, Witkamp AJ, Mali WPTM, van der Wall E, van Diest PJ, de Vries EGE, Ntziachristos V, van Dam GM (2017) Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res 23:2730–2741

    Article  CAS  PubMed  Google Scholar 

  30. Liang XY, Shang WT, Chi CW, Zeng C, Wang K, Fang C, Chen Q, Liu H, Fan Y, Tian J (2016) Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Cancer Lett 383:243–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Tianpei Guan, Guanhua Lu, and Ting Ai for assistance with data collection.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 81227901, 81627805, 61231004, 61671449, 81501540, and 81527805; National Key R&D Program of China Grant under No. 2017YFA0205200; The Science and Technology Plan Project of Guangzhou (No. 201604020144); Digital Theranostic Equipment Research Special Program of The “13th five-year” National Key Research Plan (No. 2016YFC0106500); and The United Fund of National Natural Science Foundation of China and Government of Guangdong Province (Grant No. U1401254).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chihua Fang, Kun Wang or Jie Tian.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 1.13 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Shang, W., Liang, X. et al. An Innovation for Treating Orthotopic Pancreatic Cancer by Preoperative Screening and Imaging-Guided Surgery. Mol Imaging Biol 21, 67–77 (2019). https://doi.org/10.1007/s11307-018-1209-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1209-8

Key words

Navigation