Skip to main content

Advertisement

Log in

Development of Diagnostic Techniques for Early Rheumatoid Arthritis Using Positron Emission Tomography with [11C]PK11195 and [11C]Ketoprofen Tracers

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In vivo detection of pathological insults during the early stages of rheumatoid synovitis is essential to allow early anti-inflammatory treatment for prevention of joint destruction. Whether rheumatoid synovitis pathology and the efficacy of therapies can be visualized by positron emission tomography (PET) tracers specific to the inflammatory process was investigated.

Procedures

Using a collagen-induced experimental rat model of rheumatoid arthritis, in vivo imaging using the PET tracers [11C]PK11195, which binds to the translocator protein mainly expressed on myeloid cells, and [11C]ketoprofen, for cyclooxygenase imaging, was performed. To evaluate therapeutic efficacy, model animals were administered the tumour necrosis factor alpha blocker etanercept subcutaneously.

Results

[11C]PK11195 and [11C]ketoprofen uptakes were significantly higher in inflamed paws of collagen-induced arthritis rats than in normal rats. The data showed a correlation between tracer uptake values and paw swelling. After treatment with etanercept, [11C]ketoprofen uptake was significantly lower in treated animals than in untreated ones, whereas [11C]PK11195 uptake in the inflamed regions was comparable to that in the untreated group.

Conclusions

With [11C]PK11195 and [11C]ketoprofen tracers, non-invasive in vivo PET imaging for rheumatoid synovitis can provide diagnostic evidence of early synovitis and allow monitoring inflammatory cell activity during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. da Mota LM, Laurindo IM, dos Santos Neto LL et al (2012) Imaging diagnosis of early rheumatoid arthritis. Rev Bras Reumatol 52:757–766

    PubMed  Google Scholar 

  2. Cush JJ (2007) Early rheumatoid arthritis—is there a window of opportunity? J Rheumatol Suppl 80:1–7

    CAS  PubMed  Google Scholar 

  3. Irmler IM, Opfermann T, Gebhardt P et al (2010) In vivo molecular imaging of experimental joint inflammation by combined 18F-FDG positron emission tomography and computed tomography. Arthritis Res Ther 12:R203

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kubota K, Ito K, Morooka M et al (2011) FDG PET for rheumatoid arthritis: basic considerations and whole-body PET/CT. Ann N Y Acad Sci 1228:29–38

    Article  PubMed  Google Scholar 

  5. Yamato M, Kataoka Y, Mizuma H et al (2009) PET and macro- and microautoradiographic studies combined with immunohistochemistry for monitoring rat intestinal ulceration and healing processes. J Nucl Med 50:266–273

    Article  PubMed  Google Scholar 

  6. Canat X, Carayon P, Bouaboula M et al (1993) Distribution profile and properties of peripheral-type benzodiazepine receptors on human hemopoietic cells. Life Sci 52:107–118

    Article  CAS  PubMed  Google Scholar 

  7. Canat X, Guillaumont A, Bouaboula M et al (1993) Peripheral benzodiazepine receptor modulation with phagocyte differentiation. Biochem Pharmacol 46:551–554

    Article  CAS  PubMed  Google Scholar 

  8. Kraan MC, Versendaal H, Jonker M et al (1998) Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum 41:1481–1488

    Article  CAS  PubMed  Google Scholar 

  9. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  10. Benito MJ, Veale DJ, FitzGerald O et al (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64:1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spangler RS (1996) Cyclooxygenase 1 and 2 in rheumatic disease: implications for nonsteroidal anti-inflammatory drug therapy. Semin Arthritis Rheum 26:435–446

    Article  CAS  PubMed  Google Scholar 

  12. National Research Council of the National Academies (2011) Guide for the care and use of laboratory animals eighth edition. The National Academies Press, Washington D.C.

    Google Scholar 

  13. Takashima-Hirano M, Shukuri M, Takashima T et al (2010) General method for the (11)C-labeling of 2-arylpropionic acids and their esters: construction of a PET tracer library for a study of biological events involved in COXs expression. Chemistry 16:4250–4258

    Article  CAS  PubMed  Google Scholar 

  14. Shah F, Hume SP, Pike VW et al (1994) Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 21:573–581

    Article  CAS  PubMed  Google Scholar 

  15. Goertzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309

    Article  PubMed  PubMed Central  Google Scholar 

  16. Emery P, McInnes IB, van Vollenhoven R et al (2008) Clinical identification and treatment of a rapidly progressing disease state in patients with rheumatoid arthritis. Rheumatology (Oxford) 47:392–398

    Article  CAS  Google Scholar 

  17. Möttönen T, Hannonen P, Korpela M et al (2002) Delay to institution of therapy and induction of remission using single-drug or combination-disease-modifying antirheumatic drug therapy in early rheumatoid arthritis. Arthritis Rheum 46:894–898

    Article  PubMed  Google Scholar 

  18. Anderson JJ, Wells G, Verhoeven AC et al (2000) Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum 43:22–29

    Article  CAS  PubMed  Google Scholar 

  19. Breedveld F (2011) The value of early intervention in RA—a window of opportunity. Clin Rheumatol 30(Suppl 1):S33–S39

    Article  PubMed  Google Scholar 

  20. Warner TD, Giuliano F, Vojnovic I et al (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A 96:7563–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siegle I, Klein T, Backman JT et al (1998) Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum 41:122–129

    Article  CAS  PubMed  Google Scholar 

  22. Folkersma H, Foster Dingley JC et al (2011) Increased cerebral (R)-[(11)C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation 8:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Laken CJ, Elzinga EH, Kropholler MA et al (2008) Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum 58:3350–3355

    Article  PubMed  Google Scholar 

  24. Gent YY, Voskuyl AE, Kloet RW et al (2012) Macrophage positron emission tomography imaging as a biomarker for preclinical rheumatoid arthritis: findings of a prospective pilot study. Arthritis Rheum 64:62–66

    Article  PubMed  Google Scholar 

  25. Mitoma H, Horiuchi T, Tsukamoto H et al (2008) Mechanisms for cytotoxic effects of anti-tumour necrosis factor agents on transmembrane tumour necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 58:1248–1257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Hitoshi Goto and Kohji Tanaka for their useful advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nozaki.

Ethics declarations

Conflict of Interest

Naoko Ozaki and Shinobu Suzuki were employees of Nippon Boehringer Ingelheim Co., Ltd. The other authors declare that they have no conflicts of interest. This study was supported in part by a research grant from Nippon Boehringer Ingelheim Co., Ltd., (Tokyo, Japan) to Yasuyoshi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozaki, S., Ozaki, N., Suzuki, S. et al. Development of Diagnostic Techniques for Early Rheumatoid Arthritis Using Positron Emission Tomography with [11C]PK11195 and [11C]Ketoprofen Tracers. Mol Imaging Biol 19, 746–753 (2017). https://doi.org/10.1007/s11307-016-1039-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1039-5

Key Words

Navigation