Skip to main content

Advertisement

Log in

Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use.

Procedures

Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 μg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively.

Results

Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye.

Conclusion

Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. DSouza AV, Lin H, Elliott JT et al (2016) Review of fluorescence guidance systems: identification of key performance capabilities beyond indocyanine green imaging. JBO 21:080901

    Article  Google Scholar 

  2. Vahrmeijer AL, Frangioni JV (2011) Seeing the invisible during surgery. Br J Surg 98:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stummer W, Stepp H, Möller G et al (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir 140:995–1000

    Article  CAS  PubMed  Google Scholar 

  4. Stummer W, Tonn J-C, Goetz C et al (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–320

    Article  PubMed  Google Scholar 

  5. Roberts DW, Valdés PA, Harris BT et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. J Neurosurg 114:595

    Article  PubMed  Google Scholar 

  6. Roberts DW, Valdés PA, Harris BT et al (2012) Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid). Neurosurg Clin N Am 23:371–377

    Article  PubMed  PubMed Central  Google Scholar 

  7. Valdés PA, Kim A, Brantsch M et al (2011) δ-Aminolevulinic acid–induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology 13:846–856

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  9. Stummer W, Reulen H-J, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576

    Article  PubMed  Google Scholar 

  10. Ekstrand AJ, James CD, Cavenee WK et al (1991) Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172

    CAS  PubMed  Google Scholar 

  11. Zimmermann M, Zouhair A, Azria D, Ozsahin M (2006) The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol J 1:11

    Article  Google Scholar 

  12. Barrett T, Koyama Y, Hama Y et al (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13:6639–6648

    Article  CAS  PubMed  Google Scholar 

  13. Gleysteen JP, Newman JR, Chhieng D, Frost A, Zinn KR, Rosenthal EL (2008) Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck 30:782–789

    Article  PubMed  PubMed Central  Google Scholar 

  14. Helman EE, Newman JR, Dean NR et al (2010) Optical imaging predicts tumor response to anti-EGFR therapy. Cancer Biol Ther 10:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koyama Y, Barrett T, Hama Y et al (2007) In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 9:1021–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kulbersh BD, Duncan RD, Magnuson JS et al (2007) Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg 133:511–515

    Article  PubMed  Google Scholar 

  17. Rosenthal EL, Warram JM, de Boer E et al (2015) Safety and tumor-specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verbeek FP, van der Vorst JR, Tummers QR et al (2014) Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann Surg Oncol 21:528–537

    Article  PubMed Central  Google Scholar 

  19. Wang K, Wang K, Li W et al (2009) Characterizing breast cancer xenograft epidermal growth factor receptor expression by using near-infrared optical imaging. Acta Radiol 50:1095–1103

    Article  PubMed  PubMed Central  Google Scholar 

  20. Day K, Sweeny L, Kulbersh B et al (2013) Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 15:722–729

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heath CH, Deep N, Sweeny L et al (2012) Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19:3879–3887

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rosenthal EL, Kulbersh BD, Duncan RD et al (2006) In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope 116:1636–1641

    Article  PubMed  Google Scholar 

  23. Rosenthal EL, Kulbersh BD, King T et al (2007) Use of fluorescent labeled anti–epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Res 6:1230–1238

    CAS  Google Scholar 

  24. Löfblom J, Feldwisch J, Tolmachev V et al (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680

    Article  PubMed  Google Scholar 

  25. Feldwisch J, Tolmachev V (2012) Engineering of Affibody molecules for therapy and diagnostics. Therapeutic Proteins: Methods and Protocols:103–126

  26. Tolmachev V, Orlova A, Nilsson FY et al (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568

    Article  CAS  PubMed  Google Scholar 

  27. Sandström M, Lindskog K, Velikyan I et al (2016) Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med 57:867–871

    Article  PubMed  Google Scholar 

  28. Sörensen J, Sandberg D, Sandström M et al (2014) First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 55:730–735

    Article  PubMed  Google Scholar 

  29. Sörensen J, Velikyan I, Sandberg D et al (2015) Measuring HER2-receptor expression in metastatic breast cancer using [68 Ga] ABY-025 Affibody PET/CT. Theranostics 6:262–271

    Article  Google Scholar 

  30. Baum RP, Prasad V, Müller D et al (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In-or 68Ga-labeled Affibody molecules. J Nucl Med 51:892–897

    Article  PubMed  Google Scholar 

  31. Marshall MV, Draney D, Sevick-Muraca E, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12:583–594

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Scheltinga AGT, van Dam GM, Nagengast WB et al (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52:1778–1785

    Article  Google Scholar 

  33. Hekman M, Mulders P, de Weijert M et al (2015) Ex vivo perfusion of tumorous kidneys with a dual-modality imaging probe. J Nucl Med 56:1209

    Google Scholar 

  34. Ribeiro de Souza, AL, Marra K, Gunn J, et al. (2016) Fluorescent Affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions. Mol Imaging Biol First Online 05 July 2016:1–8

  35. Sexton K, Tichauer K, Samkoe KS et al (2013) Fluorescent Affibody peptide penetration in glioma margin is superior to full antibody. PLoS One 8:e60390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  37. Giknis M, Clifford C (2006) Clinical laboratory parametes for Crl:CD (SD) rats. Charles River Laboratories:1–14

  38. Lillie LE, Temple NJ, Florence LZ (1996) Reference values for young normal Sprague-Dawley rats: weight gain, hematology and clinical chemistry. Hum Exp Toxicol 15:612–616

    Article  CAS  PubMed  Google Scholar 

  39. Friedman M, Orlova A, Johansson E et al (2008) Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol 376:1388–1402

    Article  CAS  PubMed  Google Scholar 

  40. Mitsunaga M, Ogawa M, Kosaka N et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Group ToA-rMDWPTS (1999) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials—TAP report 1. Arch Ophthalmol 117:1329

    Article  Google Scholar 

  42. Miller JW, Schmidt-Erfurth U, Sickenberg M et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol 117:1161–1173

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt-Erfurth U, Miller JW, Sickenberg M et al (1999) Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol 117:1177–1187

    Article  CAS  PubMed  Google Scholar 

  44. Chung H, Dai T, Sharma SK et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded from the National Institutes of Health grant R01CA167413.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kimberley S. Samkoe or Brian W. Pogue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samkoe, K.S., Gunn, J.R., Marra, K. et al. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use. Mol Imaging Biol 19, 512–521 (2017). https://doi.org/10.1007/s11307-016-1033-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1033-y

Key words

Navigation