Skip to main content
Log in

Targeting PSMA with a Cu-64 Labeled Phosphoramidate Inhibitor for PET/CT Imaging of Variant PSMA-Expressing Xenografts in Mouse Models of Prostate Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Prostate-specific membrane antigen (PSMA) is highly up-regulated in prostate tumor cells, providing an ideal target for imaging applications of prostate cancer. CTT-1297 (IC50 = 27 nM) is an irreversible phosphoramidate inhibitor of PSMA that has been conjugated to the CB-TE1K1P chelator for incorporation of Cu-64. The resulting positron emission tomography (PET) agent, [64Cu]ABN-1, was evaluated for selective uptake both in vitro and in vivo in PSMA-positive cells of varying expression levels. The focus of this study was to assess the ability of [64Cu]ABN-1 to detect and distinguish varying levels of PSMA in a panel of prostate tumor-bearing mouse models.

Procedures

CTT-1297 was conjugated to the CB-TE1K1P chelator using click chemistry and radiolabeled with Cu-64. Internalization and binding affinity of [64Cu]ABN-1 was evaluated in the following cell lines having varying levels of PSMA expression: LNCaP late-passage > LNCaP early passage ≈ C4-2B > CWR22rv1 and PSMA-negative PC-3 cells. PET/X-ray computed tomography imaging was performed in NCr nude mice with subcutaneous tumors of the variant PSMA-expressing cell lines.

Results

[64Cu]ABN-1 demonstrated excellent uptake in PSMA-positive cells in vitro, with ∼80 % internalization at 4 h for each PSMA-positive cell line with uptake (fmol/mg) correlating to PSMA expression levels. The imaging data indicated significant tumor uptake in all models. The biodistribution for late-passage LNCaP (highest PSMA expression) demonstrated the highest specific uptake of [64Cu]ABN-1 with tumor-to-muscle and tumor-to-blood ratios of 30 ± 11 and 21 ± 7, respectively, at 24 h post-injection. [64Cu]ABN-1 cleared through all tissues except for PSMA-positive kidneys.

Conclusion

[64Cu]ABN-1 demonstrated selective uptake in PSMA-positive cells and tumors, which correlated to the level of PSMA expression. The data reported herein suggest that [64Cu]ABN-1 will selectively target and image variant PSMA expression and in the future will serve as a non-invasive method to follow the progression of prostate cancer in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chu TC, Shieh F, Lavery LA et al (2006) Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron 21:1859–1866

    Article  CAS  PubMed  Google Scholar 

  2. Farokhzad OC, Khademhosseini A, Jon S et al (2005) Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem 77:5453–5459

    Article  CAS  PubMed  Google Scholar 

  3. Guilarte TR, McGlothan JL, Foss CA et al (2005) Glutamate carboxypeptidase II levels in rodent brain using [125I]DCIT quantitative autoradiography. Neurosci Lett 387(3):141–144

    Article  CAS  PubMed  Google Scholar 

  4. Humblet V, Lapidus R, Williams LR et al (2005) High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen. Mol Imaging 4:448–462

    PubMed  Google Scholar 

  5. Milowsky MI, Nanus DM, Kostakoglu L et al (2007) Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J Clin Oncol 25:540–547

    Article  CAS  PubMed  Google Scholar 

  6. Tsukamoto T, Wozniak KM, Slusher BS (2007) Progress in the discovery and development of glutamate carboxypeptidase II inhibitors. Drug Discov Today 12:767–776

    Article  CAS  PubMed  Google Scholar 

  7. Lapi SE, Wahnishe H, Pham D et al (2009) Assessment of an 18F-labeled phosphoramidate peptidomimetic as a new prostate-specific membrane antigen-targeted imaging agent for prostate cancer. J Nucl Med 50:2042–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nedrow-Byers JR, Jabbes M, Jewett C et al (2012) A phosphoramidate-based prostate-specific membrane antigen-targeted SPECT agent. Prostate 72:904–912

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee SR, Pullambhatla M, Foss CA et al (2014) (6)(4)Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem 57:2657–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Celis E (2002) Recognition of prostate tumor cells by cytotoxic T lymphocytes specific for prostate-specific membrane antigen. Cancer Res 62(20):5807–5812

    CAS  PubMed  Google Scholar 

  11. Liu T, Wu LY, Berkman CE (2010) Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Lett 296:106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bander NH, Milowsky MI, Nanus DM et al (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23:4591–4601

    Article  CAS  PubMed  Google Scholar 

  13. Milowsky MI, Nanus DM, Kostakoglu L et al (2004) Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 22:2522–2531

    Article  CAS  PubMed  Google Scholar 

  14. Bacich DJ, Pinto JT, Tong WP, Heston WD (2001) Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase. Mamm Genome 12(2):117–123

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Wang CY, Yang R et al (2008) Real-time quantitative RT-PCR assay of prostate-specific antigen and prostate-specific membrane antigen in peripheral blood for detection of prostate cancer micrometastasis. Urol Oncol 26:634–640

    Article  CAS  PubMed  Google Scholar 

  16. Perner S, Hofer MD, Kim R et al (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701

    Article  CAS  PubMed  Google Scholar 

  17. Bradford TJ, Tomlins SA, Wang X, Chinnaiyan AM (2006) Molecular markers of prostate cancer. Urol Oncol 24:538–551

    Article  CAS  PubMed  Google Scholar 

  18. Evans MJ, Smith-Jones PM, Wongvipat J et al (2011) Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A 108:9578–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hillier SM, Kern AM, Maresca KP et al (2011) 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med 52:1087–1093

    Article  CAS  PubMed  Google Scholar 

  20. Baum EM, Ernestis, MC, Know HD, et al (2010) Nuclides and isotopes chart of the nuclides. In: Edward Baum. Marine B (ed) Propulsion Corporation, pp 54-55

  21. Rockey WM, Huang L, Kloepping KC et al (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem 19:4080–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hao G, Kumar A, Dobin T et al (2013) A multivalent approach of imaging probe design to overcome an endogenous anion binding competition for noninvasive assessment of prostate specific membrane antigen. Mol Pharm 10:2975–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu T, Wu LY, Kazak M, Berkman CE (2008) Cell-Surface labeling and internalization by a fluorescent inhibitor of prostate-specific membrane antigen. Prostate 68:955–964

    Article  CAS  PubMed  Google Scholar 

  24. Nedrow-Byers JR, Jabbes, M., Jewett, C., et al (2011) A phosphoramidate-based prostate-specific membrane antigen-targeted SPECT agent. The Prostate

  25. Nedrow-Byers JR, Moore AL, Ganguly T et al (2013) PSMA-targeted SPECT agents: mode of binding effect on in vitro performance. Prostate 73:355–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng D, Ouyang Q, Cai Z et al (2014) New cross-bridged cyclam derivative CB-TE1K1P, an improved bifunctional chelator for copper radionuclides. Chem Commun (Camb) 50:43–45

    Article  Google Scholar 

  27. Sprague JE, Peng Y, Sun X et al (2004) Preparation and biological evaluation of copper-64-labeled tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 10:8674–8682

    Article  CAS  PubMed  Google Scholar 

  28. Wadas TJ, Eiblmaier M, Zheleznyak A et al (2008) Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors. J Nucl Med 49:1819–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anderson CJ, Jones LA, Bass LA et al (1998) Radiotherapy, toxicity and dosimetry of copper-64-TETA-octreotide in tumor-bearing rats. J Nucl Med 39:1944–1951

    CAS  PubMed  Google Scholar 

  30. Aggarwal S, Ricklis RM, Williams SA, Denmeade SR (2006) Comparative study of PSMA expression in the prostate of mouse, dog, monkey, and human. Prostate 66:903–910

    Article  CAS  PubMed  Google Scholar 

  31. Gregor PD, Wolchok JD, Turaga V et al (2005) Induction of autoantibodies to syngeneic prostate-specific membrane antigen by xenogeneic vaccination. Int J Cancer 116:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Foss CA, Byun Y et al (2008) Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J Med Chem 51:7933–7943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kularatne SA, Wang K, Santhapuram HK, Low PS (2009) Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol Pharm 6:780–789

    Article  CAS  PubMed  Google Scholar 

  34. Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs : Clin Immunother Biopharm Gene Ther 19:145–163

    Article  CAS  Google Scholar 

  35. Weiner RE, Thakur ML (2002) Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl Radiat Isot 57:749–763

    Article  CAS  PubMed  Google Scholar 

  36. Foss CA, Mease RC, Fan H et al (2005) Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res 11:4022–4028

    Article  CAS  PubMed  Google Scholar 

  37. Lesche R, Kettschau G, Gromov AV et al (2014) Preclinical evaluation of BAY 1075553, a novel (18)F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 41:89–101

    Article  CAS  PubMed  Google Scholar 

  38. Liu AY, Brubaker KD, Goo YA et al (2004) Lineage relationship between LNCaP and LNCaP-derived prostate cancer cell lines. Prostate 60:98–108

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Rajasekaran AK, Moy P et al (1998) Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 58:4055–4060

    CAS  PubMed  Google Scholar 

  40. Ganguly T, Dannoon S, Hopkins MR, et al (2015) A high-affinity [F]-labeled phosphoramidate peptidomimetic PSMA-targeted inhibitor for PET imaging of prostate cancer. Nucl Med Biol

  41. Banerjee SR, Foss CA, Castanares M et al (2008) Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 51:4504–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray Banerjee S, Pullambhatla M, Foss CA et al (2013) Effect of chelators on the pharmacokinetics of (99m)Tc-labeled imaging agents for the prostate-specific membrane antigen (PSMA). J Med Chem 56:6108–6121

    Article  CAS  PubMed  Google Scholar 

  43. Muller C, Struthers H, Winiger C et al (2013) DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med 54:124–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH/NCI (R01CA140617) and Department of Energy/NIBIB, DE-SC0008833. UPCI shared resources (In Vivo Imaging Facility and Biostatistics) were used in this research and supported in part by NCI P30CA047904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Anderson.

Ethics declarations

Conflict of Interest

Dr. Berkman is the inventor on issued patents related to PSMA inhibitors described in this report and presently also serves as the CSO of Cancer Targeted Technology.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 9492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedrow, J.R., Latoche, J.D., Day, K.E. et al. Targeting PSMA with a Cu-64 Labeled Phosphoramidate Inhibitor for PET/CT Imaging of Variant PSMA-Expressing Xenografts in Mouse Models of Prostate Cancer. Mol Imaging Biol 18, 402–410 (2016). https://doi.org/10.1007/s11307-015-0908-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0908-7

Key words

Navigation