Skip to main content

Advertisement

Log in

PET Molecular Imaging of Angiogenesis with a Multiple Tyrosine Kinase Receptor-Targeted Agent in a Rat Model of Myocardial Infarction

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Angiogenesis plays a major role in tissue remodeling and repair after myocardial infarction (MI), and imaging it could provide information on the healing process. During angiogenesis, vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), and Tie receptors are upregulated, and this study aimed to develop a C-11 positron emission tomography (PET) agent for imaging angiogenesis by targeting these receptors.

Procedures

A VEGFR-2/Tie-2/PDGFRα inhibitor (N-(6-{4-[3-(2-fluoro-5-trifluoromethyl-phenyl)-ureido]-phenoxy}-1H-benzoimidazol-2-yl)-2-(4-methyl-piperazin-1-yl)-acetamide (ATV-1)) was synthesized and labeled with C-11. MicroPET imaging of a rat MI model was compared to proteins expression by immunohistochemistry.

Results

[11C]ATV-1 specifically accumulated in the infracted region of the left ventricular (LV) lateral wall more than in the interventricular septal wall, but not in sham-operated or healthy animals. Moreover, [11C]ATV-1 uptake in the LV significantly correlated with Tie-2, VEGFR-2, and PDGFRα expression.

Conclusion

Imaging angiogenesis in MI rats using [11C]ATV-1 and PET has been demonstrated. These results merit further research and development of more hydrophilic modified [11C]ATV-1 as a PET tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    Article  CAS  PubMed  Google Scholar 

  2. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  3. Loughna S, Sato TN (2001) Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol 20:319–325

    Article  CAS  PubMed  Google Scholar 

  4. Peters KG, Kontos CD, Lin PC et al (2004) Functional significance of Tie2 signaling in the adult vasculature. Recent Prog Horm Res 59:51–71

    Article  CAS  PubMed  Google Scholar 

  5. Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  CAS  PubMed  Google Scholar 

  6. Backer MV, Backer JM (2012) Imaging key biomarkers of tumor angiogenesis. Theranostics 2:502–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Willam C, Koehne P, Jurgensen JS et al (2000) Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 87:370–377

    Article  CAS  PubMed  Google Scholar 

  8. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  CAS  PubMed  Google Scholar 

  9. Jeltsch M, Leppanen VM, Saharinen P, Alitalo K (2013) Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol 5. doi:10.1101/cshperspect.a009183

  10. Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  CAS  PubMed  Google Scholar 

  11. Jones N, Iljin K, Dumont DJ, Alitalo K (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267

    Article  CAS  PubMed  Google Scholar 

  12. Alvarez RH, Kantarjian HM, Cortes JE (2006) Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 81:1241–1257

    Article  CAS  PubMed  Google Scholar 

  13. Tateishi U, Oka T, Inoue T (2012) Radiolabeled RGD peptides as integrin alpha(v)beta3-targeted PET tracers. Curr Med Chem 19:3301–3309

    Article  CAS  PubMed  Google Scholar 

  14. Iagaru A, Gambhir SS (2013) Imaging tumor angiogenesis: the road to clinical utility. AJR Am J Roentgenol 201:W183–W191

    Article  PubMed  Google Scholar 

  15. Haubner R, Beer AJ, Wang H, Chen X (2010) Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S86–S103

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973

    Article  CAS  PubMed  Google Scholar 

  17. Shyu KG, Chang CC, Wang BW et al (2003) Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion. Clin Sci (Lond) 105:287–294

    Article  CAS  Google Scholar 

  18. Shyu KG, Liang YJ, Chang H et al (2004) Enhanced expression of angiopoietin-2 and the Tie2 receptor but not angiopoietin-1 or the Tie1 receptor in a rat model of myocardial infarction. J Biomed Sci 11:163–171

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Brown LF, Hibberd MG, Grossman JD et al (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811

    CAS  PubMed  Google Scholar 

  20. Hasegawa M, Nishigaki N, Washio Y et al (2007) Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. J Med Chem 50:4453–4470

    Article  CAS  PubMed  Google Scholar 

  21. Leopoldo M, Lacivita E, De Giorgio P et al (2008) Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. Part III. J Med Chem 51:5813–5822

    Article  CAS  PubMed  Google Scholar 

  22. Cai L, Chin FT, Pike VW et al (2004) Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N, N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for beta-amyloid in Alzheimer’s disease. J Med Chem 47:2208–2218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Grass TM, Lurie DI, Coffin JD (2006) Transitional angiogenesis and vascular remodeling during coronary angiogenesis in response to myocardial infarction. Acta Histochem 108:293–302

    Article  PubMed  Google Scholar 

  24. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Sassi Cohen, Daniel Wajnblum, and Nickolay Koroukhov for their invaluable technical support and assistance.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orit Jacobson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dissoki, S., Abourbeh, G., Salnikov, O. et al. PET Molecular Imaging of Angiogenesis with a Multiple Tyrosine Kinase Receptor-Targeted Agent in a Rat Model of Myocardial Infarction. Mol Imaging Biol 17, 222–230 (2015). https://doi.org/10.1007/s11307-014-0790-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0790-8

Key words

Navigation