Skip to main content

Advertisement

Log in

GRP Receptor Imaging of Prostate Cancer Using [99mTc]Demobesin 4: a First-in-Man Study

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

We explored the imaging of bombesin receptors and evaluated the clinical use of [99mTc]Demobesin 4 ([99mTc]DB4) in prostate cancer patients.

Procedures

[99mTc]DB4 was prepared according to Good Manufacturing Practice. Patients with prostate cancer underwent serial planar and SPECT imaging up to 3 h after administration. Blood and urine samples were taken to assess pharmacokinetics.

Results

[99mTc]DB4 is safe and clears rapidly from the bloodstream via the kidneys resulting in low background activity. The tracer binds strongly to the gastrin-releasing peptide receptor (GRPR) in vivo as indicated by the high uptake in the pancreas seen in all patients. In patients who had undergone hormone therapy, [99mTc]DB4 did not efficiently image metastatic prostate cancer. In contrast, in newly diagnosed patients local disease was visualised.

Conclusions

The GRPR is an unsuitable target for imaging refractory prostate cancer but may be useful in untreated disease. [99mTc]DB4 is a promising radiopharmaceutical which merits further exploration in this specific group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Picchio M, Piert M (2013) Prostate cancer imaging. Eur J Nucl Med Mol Imaging 40(Suppl 1):S1–S4

    Article  PubMed  Google Scholar 

  2. Outwater EK, Montilla-Soler JL (2013) Imaging of prostate carcinoma. Cancer Control 20:161–176

    PubMed  Google Scholar 

  3. Murphy G, Haider M, Ghai S, Sreeharsha B (2013) The expanding role of MRI in prostate cancer. AJR Am J Roentgenol 201:1229–1238

    Article  PubMed  Google Scholar 

  4. Geijer H, Breimer LH (2013) Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 40:1770–1780

    Article  CAS  PubMed  Google Scholar 

  5. Gugger M, Reubi JC (1999) Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 155:2067–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    CAS  PubMed  Google Scholar 

  7. Nock B, Nikolopoulou A, Chiotellis E et al (2003) [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258

    Article  CAS  PubMed  Google Scholar 

  8. Reubi JC, Korner M, Waser B et al (2004) High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 31:803–810

    Article  CAS  PubMed  Google Scholar 

  9. Cornelio DB, Meurer L, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor expression in cervical cancer. Oncology 73:340–345

    Article  PubMed  Google Scholar 

  10. Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hoffman TJ, Sicckman GL, Volkert WA (1995) Targeting small cell lung cancer using iodinated peptide analogs. J Label Compd Radiopharm 37:321–323

    Google Scholar 

  12. Van de Wiele C, Dumont F, Vanden Broecke R et al (2000) Technetium-99 m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 27:1694–1699

    Article  PubMed  Google Scholar 

  13. Scopinaro F, De Vincentis G, Corazziari E et al (2004) Detection of colon cancer with 99mTc-labeled bombesin derivative (99mTc -leu13-BN1). Cancer Biother Radiopharm 19:245–252

    Article  CAS  PubMed  Google Scholar 

  14. Scopinaro F, De Vincentis G, Varvarigou AD et al (2003) 99mTc -bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging 30:1378–1382

    Article  PubMed  Google Scholar 

  15. Scopinaro F, Varvarigou A, Ussof W et al (2002) Breast cancer takes up 99mTc bombesin. A preliminary report. Tumori 88:S25–S28

    CAS  PubMed  Google Scholar 

  16. Bodei L, Ferrari M, Nunn A et al (2007) 177Lu-AMBA bombesin analogue in hormone refractory prostate cancer patients: a phase I escalation study with single-cycle administrations. Eur J Nucl Med Mol Imaging 34:S221

    Google Scholar 

  17. Hofmann M, Machtens S, Stief C et al (2004) Feasibility of Ga-68-DOTABOM PET in prostate carcinoma patients. Eur J Nucl Med Mol Imaging 31:S253

    Google Scholar 

  18. Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U et al (2007) 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparison with 18F-FDG. J Nucl Med 48:1245–1250

    Article  CAS  PubMed  Google Scholar 

  19. Schaefer N, Valencia R, Borkowski S et al (2011) Comparison of BAY 86-4367, a new F-18 labeled bombesin analog, with F-18-ethyl-choline in recurrent and primary prostate cancer patients. J Nucl Med Meet Abstr 52:40

    Google Scholar 

  20. Bergsma H, Kulkarni HR, Mueller D et al (2013) PET/CT imaging with a novel 68Ga-labeled GRP-receptor antagonist, sarabesin 3. First clinical data in patients with prostate and breast cancer. J Nucl Med 54:84P

    Google Scholar 

  21. Schroeder RP, de Visser M, van Weerden WM et al (2009) Androgen-regulated gastrin-releasing peptide receptor expression in androgen-dependent human prostate tumor xenografts. Int J Cancer 126:2826–2834

    Google Scholar 

  22. Van de Wiele C, Dumont F, Dierckx RA et al (2001) Biodistribution and dosimetry of (99 m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 42:1722–1727

    PubMed  Google Scholar 

  23. Nock BA, Maina T (2012) Tetraamine-coupled peptides and resulting 99mTc -radioligands: an effective route for receptor-targeted diagnostic imaging of human tumors. Curr Top Med Chem 12:2655–2667

    Article  CAS  PubMed  Google Scholar 

  24. Nock BA, Nikolopoulou A, Galanis A et al (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48:100–110

    Article  CAS  PubMed  Google Scholar 

  25. Commission E (2010) The Rules Governing Medicinal Products in the European Union. Volume 4. EU Guidelines to Good Manufacturing Practice. Annex 13. Investigational Medicinal Products

  26. Decristoforo C, Maina T, Nock B et al (2003) 99mTc -demotate 1: first data in tumour patients-results of a pilot/phase I study. Eur J Nucl Med Mol Imaging 30:1211–1219

    Article  CAS  PubMed  Google Scholar 

  27. Kahkonen E, Jambor I, Kemppainen J et al (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 19:5434–5443

    Article  PubMed  Google Scholar 

  28. Froberg A, Visser M, Maina T et al (2006) Are GRP-receptors present in the human pancreas? J Nucl Med 47:429p

    Google Scholar 

  29. Montet X, Yuan H, Weissleder R, Josephson L (2006) Enzyme-based visualization of receptor-ligand binding in tissues. Lab Investig 86:517–525

    Article  CAS  PubMed  Google Scholar 

  30. Ananias HJ, Yu Z, Hoving HD et al (2013) Application of 99mTechnetium-HYNIC(tricine/TPPTS)-aca-bombesin(7-14) SPECT/CT in prostate cancer patients: a first-in-man study. Nucl Med Biol 40:933–938

    Article  CAS  PubMed  Google Scholar 

  31. Beer M, Montani M, Gerhardt J et al (2012) Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate 72:318–325

    Article  CAS  PubMed  Google Scholar 

  32. de Visser M, van Weerden WM, de Ridder CM et al (2007) Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J Nucl Med 48:88–93

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the help of Beverley Holman with dosimetry calculations, the financial support of Cancer Research UK and the assistance of the Radiopharmacy Department of St Bartholomews Hospital, London.

Conflict of Interest

The authors declare they have no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Mather.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mather, S.J., Nock, B.A., Maina, T. et al. GRP Receptor Imaging of Prostate Cancer Using [99mTc]Demobesin 4: a First-in-Man Study. Mol Imaging Biol 16, 888–895 (2014). https://doi.org/10.1007/s11307-014-0754-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0754-z

Key words

Navigation