Skip to main content

Advertisement

Log in

Nuclear magnetic resonance-based metabolomics of OCT-embedded frozen kidney samples in mouse and man following standardized pre-analytics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Pre-analytical processing significantly affects tissue metabolomes. Since most frozen kidney samples are stored after embedding, standardization of cryoprotective medium removal before metabolomics is essential.

Objectives

We used rodent and human kidney samples to develop an easy and robust pre-analytical procedure compatible with 1H-nuclear magnetic resonance (NMR)-based metabolomics.

Methods

In mice, renal ischemia was induced for 30 min, followed by 48-h reperfusion (I/R, n = 6). Right kidneys were transversally cut in two fragments, and snap-frozen in liquid nitrogen (LN2) or in Optimal Cutting Temperature ® (OCT) fixative. In man, double kidney biopsies were simultaneously obtained before transplantation (n = 15), and snap-frozen in LN2 or OCT.

Results

1H-NMR spectrum of pure OCT highlighted two major peaks, i.e. from 3.4 to 4.2 ppm (47.2%) and from 1.2 to 2.2 ppm (42.5%). 1H-NMR spectra of mouse OCT kidneys were biased at 3.7. By contrast, 1H-NMR analyses of mouse OCT kidneys iteratively rinsed in saline significantly discriminated sham versus I/R groups, with Q² at 0.695 (to be compared with Q² at 0.866 for LN2 sham vs. I/R kidneys). Discriminant metabolites were analogous in both OCT and LN2 kidneys, with a correlation coefficient of 0.83. In man, iteratively rinsing OCT kidneys in saline eliminated the spectral 3.7-peak, thereby making metabolomes of OCT kidneys interpretable and similar to LN2 samples, with a correlation coefficient of 0.73.

Conclusion

NMR metabolomics using OCT-frozen kidney samples is valuable in mouse and man, following standardized OCT removal. This may help use residual biobanked human tissues to better understand renal pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atzler, D., Schwedhelm, E., & Zeller, T. (2014). Integrated genomics and metabolomics in nephrology. Nephrology, Dialysis, Transplantation, 29, 1467–1474.

    Article  CAS  Google Scholar 

  • Beckonert, O., Coen, M., Keun, H. C., Wang, Y., Ebbels, T. M., Holmes, E. et al. (2010). High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols, 5, 1019–1032.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, C. C., Martin, B. R., & Asa, S. L. (2013). Defining diagnostic tissue in the era of personalized medicine. CMAJ, 185, 135–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cisek, K., Krochmal, M., Klein, J., & Mischak, H. (2016). The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrology Dialysis Transplantation, 31, 2003–2011.

    Article  Google Scholar 

  • Frederich, M., Pirotte, B., Fillet, M., & de Tullio, P. (2016). Metabolomics as a challenging approach for medicinal chemistry and personalized medicine. Journal of Medicinal Chemistry, 59, 8649–8666.

    Article  CAS  PubMed  Google Scholar 

  • Jouret, F., Leenders, J., Poma, L., Defraigne, J. O., Krzesinski, J. M., & de Tullio, P. (2016). Nuclear magnetic resonance metabolomic profiling of mouse kidney, urine and serum following renal ischemia/reperfusion injury. PLoS ONE, 11, e0163021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, J., Bascands, J. L., Mischak, H., & Schanstra, J. P. (2016). The role of urinary peptidomics in kidney disease research. Kidney International, 89, 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. C., Maillot, M., Mazerolles, G., Verdu, A., Lyan, B., Migne, C. et al. (2015). Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study. Metabolomics, 11, 807–821.

    Article  CAS  PubMed  Google Scholar 

  • Matheus, N., Hansen, S., Rozet, E., Peixoto, P., Maquoi, E., Lambert, V. et al. (2014). An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochemical Analysis: PCA, 25, 342–349.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Holmes, E., Kinross, J. M., Darzi, A. W., Takats, Z., & Lindon, J. C. (2012). Metabolic phenotyping in clinical and surgical environments. Nature, 491, 384–392.

    Article  CAS  PubMed  Google Scholar 

  • Posada-Ayala, M., Zubiri, I., Martin-Lorenzo, M., Sanz-Maroto, A., Molero, D., Gonzalez-Calero, L. et al. (2014). Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney International, 85, 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, E. P. (2015). Metabolomics and renal disease. Current Opinion in Nephrology and Hypertension, 24, 371–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Righi, V., Schenetti, L., Maiorana, A., Libertini, E., Bettelli, S., Bonetti, L. R. et al. (2015). Assessment of freezing effects and diagnostic potential of BioBank healthy and neoplastic breast tissues through HR-MAS NMR spectroscopy. Metabolomics, 11, 487–498.

    Article  CAS  Google Scholar 

  • Serkova, N., Fuller, T. F., Klawitter, J., Freise, C. E., & Niemann, C. U. (2005). H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney International, 67, 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, M., Hoffmann, D., Adler, M., Vaidya, V. S., Clement, M., Bonventre, J. V. et al. (2009). Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicological Sciences, 109, 336–349.

    Article  CAS  Google Scholar 

  • Vivot, K., Benahmed, M. A., Seyfritz, E., Bietiger, W., Elbayed, K., Ruhland, E. et al. (2016). A metabolomic approach (1 H HRMAS NMR Spectroscopy) supported by histology to study early post-transplantation responses in islet-transplanted livers. International Journal of Biological Sciences, 12, 1168–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrana, M., Goodling, A., Afkarian, M., & Prasad, B. (2016). An optimized method for protein extraction from OCT-embedded human kidney tissue for protein quantification by LC-MS/MS proteomics. Drug Metabolism and Disposition, 44, 1692–1696.

    Article  CAS  Google Scholar 

  • Weekers, L., de Tullio, P., Bovy, C., Poma, L., Maree, R., Bonvoisin, C. et al. (2015). Activation of the calcium-sensing receptor before renal ischemia/reperfusion exacerbates kidney injury. American Journal of Translational Research, 7, 128–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, R. H., & Kim, K. (2012). Metabolomics in the study of kidney diseases. Nature Reviews Nephrology, 8, 22–33.

    Article  CAS  Google Scholar 

  • Williams, W. W., Taheri, D., Tolkoff-Rubin, N., & Colvin, R. B. (2012). Clinical role of the renal transplant biopsy. Nature Reviews Nephrology, 8, 110–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, A., Sun, H., Qiu, S., & Wang, X. (2014). Metabolomics insights into pathophysiological mechanisms of nephrology. International Urology and Nephrology, 46, 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Sakashita, S., Taylor, P., Tsao, M. S., & Moran, M. F. (2015). Comprehensive proteome analysis of fresh frozen and optimal cutting temperature (OCT) embedded primary non-small cell lung carcinoma by LC-MS/MS. Methods, 81, 50–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FJ is a Fellow of the Fonds National de la Recherche Scientifique (FNRS), and received support from the University of Liège (Fonds Spéciaux à la Recherche, Fonds Léon Fredericq) and the FNRS (Research Credit #3309). PDT is Senior Research Associate of the Fonds National de la Recherche Scientifique (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Jouret.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical approval

Our experimental mouse model was approved by the Institutional Animal Care and Use Committee of the University of Liège in Liège, Belgium (approval number: #1335). Our protocol using human kidney samples was approved by the Ethics Committee of the Cliniques Universitaires Saint-Luc (Université catholique de Louvain) in Brussels, Belgium (approval number; #2016/08MAR/086).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leenders, J., Buemi, A., Mourad, M. et al. Nuclear magnetic resonance-based metabolomics of OCT-embedded frozen kidney samples in mouse and man following standardized pre-analytics. Metabolomics 13, 94 (2017). https://doi.org/10.1007/s11306-017-1232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1232-9

Keywords

Navigation