Skip to main content

Advertisement

Log in

Metabolic markers for differentiation between renal allograft rejection and immunosuppressant toxicity in rat urine

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Although current immunosuppressive protocols have dramatically improved 1-year survival of kidney transplants, there has been less progress in terms of long-term graft survival over the last two decades. The key to avoiding late graft loss is early diagnosis and differentiation between anti-allograft immune processes and immunosuppressant toxicity (IS-Tox). Modern bioanalytical technologies have opened new opportunities for the development of sensitive and specific diagnostic tools. There is an immediate need for biomarkers that are able to differentiate between renal allograft rejection and immunosuppressant toxicity.

Objective

To test our hypothesis that changes of metabolite patterns in urine have the potential to serve as a non-invasive combinatorial biomarker that can differentiate between allograft immune reactions and IS-Tox.

Methods

We used 1H-NMR spectroscopy and Luminex multiplexing for metabolic profiling of rat urine and the analysis of protein biomarkers in urine and plasma, respectively, to compare the effects of chronic allograft rejection in a Fisher-to-Lewis rat transplant model with IS-Tox induced by cyclosporine, tacrolimus and/or sirolimus in Lewis rats.

Results

Our results showed that, while IS-Tox caused changes in metabolite patterns that are typically associated with proximal tubule damage, rejection caused more profuse changes not specifically focused on a particular kidney region. Moreover, metabolite pattern changes were more sensitive than changes in protein markers that were evident only during the later stages of rejection.

Conclusion

The present study provides first proof-of-concept that longitudinal monitoring of urine metabolite markers has the potential to differentiate between early renal allograft rejection and immunosuppressant nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur, J. M., Hill, E. G., Alge, J. L., Lewis, E. C., Neely, B. A., Janech, M. G., Tumlin, J. A., Chawla, L. S., Shaw, A. D. & SAKInet Investigators (2014). Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery. Kidney International, 85, 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Bairaktari, E., Katopodis, K., Siamopoulos, K. C., & Tsolas, O. (1998). Paraquat-induced renal injury studied by 1 H nuclear magnetic resonance spectroscopy of urine. Clinical Chemistry, 44, 1256–1261.

    CAS  PubMed  Google Scholar 

  • Baluja, P., Haragsim, L., & Laszik, Z. (2006). Chronic allograft nephropathy. Advances in Chronic Kidney Disease, 13, 56–61.

    Article  PubMed  Google Scholar 

  • Beckwith-Hall, B. M., Holmes, E., Lindon, J. C., Gounarides, J., Vickers, A., Shapiro, M., & Nicholson, J. K. (2002). NMR-based metabonomic studies on the biochemical effects of commonly used drug carrier vehicles in the rat. Chemical Research in Toxicology, 15, 1136–1141.

    Article  CAS  PubMed  Google Scholar 

  • Bohra, R., Klepacki, J., Klawitter, J., Klawitter, J., Thurman, J. M., & Christians, U. (2013). Proteomics and metabolomics in renal transplantation-quo vadis? Transplant International: Official Journal of the European Society for Organ Transplantation, 26, 225–241.

    Article  CAS  Google Scholar 

  • Bohra, R., Schoning, W., Klawitter, J., Brunner, N., Schmitz, V., Shokati, T., Lawrence, R., Arbelaez, M. F., Schniedewind, B., Christians, U., & Klawitter, J. (2012). Everolimus and sirolimus in combination with cyclosporine have different effects on renal metabolism in the rat. PLoS ONE, 7, e48063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonventre, J. V., Vaidya, V. S., Schmouder, R., Feig, P., & Dieterle, F. (2010). Next-generation biomarkers for detecting kidney toxicity. Nature Biotechnology, 28, 436–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., Clarke, S., Schofield, P. M., Mckilligin, E., Mosedale, D. E., & Grainger, D. J. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Natural Medicines, 8, 1439–1444.

    Article  CAS  Google Scholar 

  • Brook, N. R., Waller, J. R., Bicknell, G. R., & Nicholson, M. L. (2005). Cyclosporine and rapamycin act in a synergistic and dose-dependent manner in a model of immunosuppressant-induced kidney damage. Transplantation Proceedings, 37, 837–838.

    Article  CAS  PubMed  Google Scholar 

  • Brunet, M., Shipkova, M., Van Gelder, T., Wieland, E., Sommerer, C., Budde, K., Haufroid, V., Christians, U., Lopez-Hoyos, M., Barten, M. J., Bergan, S., Picard, N., Millan Lopez, O., Marquet, P., Hesselink, D. A., Noceti, O., Pawinski, T., Wallemacq, P., & Oellerich, M. (2016). Barcelona consensus on biomarker-based immunosuppressive drugs management in solid organ transplantation. Therapeutic Drug Monitoring, 38(Suppl 1), 1–20.

    Article  Google Scholar 

  • Campistol, J. M., & Grinyo, J. M. (2001). Exploring treatment options in renal transplantation: The problems of chronic allograft dysfunction and drug-related nephrotoxicity. Transplantation, 71, S42–S51.

    Google Scholar 

  • Chen, C., Yang, X., Lei, Y., Zha, Y., Liu, H., Ma, C., Tian, J., Chen, P., Yang, T., & Hou, F. F. (2016). Urinary biomarkers at the time of AKI diagnosis as predictors of progression of AKI among patients with acute cardiorenal syndrome. Clinical Journal of the American Society of Nephrology, 11, 1536–1544.

    Article  CAS  PubMed  Google Scholar 

  • Christians, U., Klawitter, J., Klawitter, J., Brunner, N. & Schmitz, V. (2011). Biomarkers of immunosuppressant organ toxicity after transplantation- status, concepts and misconceptions. Expert Opinion on Drug Metabolism and Toxicology, 7(2), 175–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Christians, U., Klawitter, J., Klepacki, J. & Klawitter, J. (2016). The role of metabolomics in the study of kidney diseases and in the development of diagnostic tools. In Edelstein C. (Ed.), Biomarkers of kidney disease (pp. 33–118, 2nd edn.). San Diego: Elsevier.

    Google Scholar 

  • Diamond, J. R., Tilney, N. L., Frye, J., Ding, G., McElroy, J., Pesek-Diamond, I., & Yang, H. (1992). Progressive albuminuria and glomerulosclerosis in a rat model of chronic renal allograft rejection. Transplantation, 54, 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Dieterle, F., Perentes, E., Cordier, A., Roth, D. R., Verdes, P., Grenet, O., Pantano, S., Moulin, P., Wahl, D., Mahl, A., End, P., Staedtler, F., Legay, F., Carl, K., Laurie, D., Chibout, S. D., Vonderscher, J., & Maurer, G. (2010). Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nature Biotechnology, 28, 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Hall, I. E., Coca, S. G., Perazella, M. A., Eko, U. U., Luciano, R. L., Peter, P. R., Han, W. K., & Parikh, C. R. (2011). Risk of poor outcomes with novel and traditional biomarkers at clinical AKI diagnosis. Clinical Journal of the American Society of Nephrology, 6, 2740–2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara, S. (2015). Banff 2013 update: Pearls and pitfalls in transplant renal pathology. Nephrology (Carlton), 20(Suppl 2), 2–8.

    Article  CAS  Google Scholar 

  • Hariharan, S., Johnson, C. P., Bresnahan, B. A., Taranto, S. E., Mcintosh, M. J., & Stablein, D. (2000). Improved graft survival after renal transplantation in the United States, 1988 to 1996. The New England Journal of Medicine, 342, 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Hauet, T., Baumert, H., Gibelin, H., Godart, C., Carretier, M., & Eugene, M. (2000a). Citrate, acetate and renal medullary osmolyte excretion in urine as predictor of renal changes after cold ischaemia and transplantation. Clinical Chemistry and Laboratory Medicine: CCLM/FESCC, 38, 1093–1098.

    CAS  Google Scholar 

  • Hauet, T., Gibelin, H., Godart, C., Eugene, M., & Carretier, M. (2000b). Kidney retrieval conditions influence damage to renal medulla: evaluation by proton nuclear magnetic resonance (NMR) pectroscopy. Clinical Chemistry and Laboratory Medicine: CCLM/FESCC, 38, 1085–1092.

    CAS  Google Scholar 

  • Henderson, L. K., Nankivell, B. J., & Chapman, J. R. (2011). Surveillance protocol kidney transplant biopsies: Their evolving role in clinical practice. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 11, 1570–1575.

    Article  CAS  Google Scholar 

  • Jevnikar, A. M., & Mannon, R. B. (2008). Late kidney allograft loss: what we know about it, and what we can do about it. Clinical Journal of the American Society of Nephrology, 3(Suppl 2), 56–67.

    Article  Google Scholar 

  • Joosten, S. A., Sijpkens, Y. W., Van Kooten, C., & Paul, L. C. (2005). Chronic renal allograft rejection: Pathophysiologic considerations. Kidney International, 68, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Junaid, A., Kren, S. M., Rosenberg, M. E., Nath, K. A. & Hostetter, T. H. 1994. Physiological and structural responses to chronic experimental renal allograft injury. American Journal of Physiology-Renal Physiology, 267, F1102–F1106.

    CAS  Google Scholar 

  • Kahan, B. D. (2001). Potential therapeutic interventions to avoid or treat chronic allograft dysfunction. Transplantation, 71, S52–S57.

    Article  Google Scholar 

  • Kaplan, B. (2006). Overcoming barriers to long-term graft survival. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 47, S52–S64.

    Article  Google Scholar 

  • Klawitter, J., Bendrick-Peart, J., Rudolph, B., Beckey, V., Klawitter, J., Haschke, M., Rivard, C., Chan, L., Leibfritz, D., Christians, U., & Schmitz, V. (2009). Urine metabolites reflect time-dependent effects of cyclosporine and sirolimus on rat kidney function. Chemical Research in Toxicology, 22, 118–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klawitter, J., Klawitter, J., Kushner, E., Jonscher, K., Bendrick-Peart, J., Leibfritz, D., Christians, U., & Schmitz, V. (2010). Association of immunosuppressant-induced protein changes in the rat kidney with changes in urine metabolite patterns: a proteo-metabonomic study. Journal of Proteome Research, 9, 865–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klawitter, J., Klawitter, J., Schmitz, V., Brunner, N., Crunk, A., Corby, K., Bendrick-Peart, J., Leibfritz, D., Edelstein, C. L., Thurman, J. M., & Christians, U. (2012). Low-salt diet and cyclosporine nephrotoxicity: Changes in kidney cell metabolism. Journal of Proteome Research, 11, 5135–5144.

    Article  CAS  PubMed  Google Scholar 

  • Klawitter, J., Klawitter, J., Schmitz, V., Shokati, T., Epshtein, E., Thurman, J. M., & Christians, U. (2014). Mycophenolate mofetil enhances the negative effects of sirolimus and tacrolimus on rat kidney cell metabolism. PLoS ONE, 9, e86202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koop, K., Bakker, R. C., Eikmans, M., Baelde, H. J., de Heer, E., Paul, L. C., & Bruijn, J. A. (2004). Differentiation between chronic rejection and chronic cyclosporine toxicity by analysis of renal cortical mRNA. Kidney International, 66, 2038–2046.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, J. N. & Gruenstein, E. 1999. A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC-inulin. American Journal of Physiology-Renal Physiology, 276, F172–7.

    CAS  Google Scholar 

  • Marco, M. L. (2006). The Fischer-Lewis model of chronic allograft rejection–a summary. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 21, 3082–3086.

    Article  Google Scholar 

  • Meier-Kriesche, H. U., Schold, J. D., Srinivas, T. R., & Kaplan, B. (2004). Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 4, 378–383.

    Article  Google Scholar 

  • Merville, P. (2005). Combating chronic renal allograft dysfunction : Optimal immunosuppressive regimens. Drugs, 65, 615–631.

    Article  CAS  PubMed  Google Scholar 

  • Nankivell, B. J., & Chapman, J. R. (2006). Chronic allograft nephropathy: Current concepts and future directions. Transplantation, 81, 643–654.

    Article  PubMed  Google Scholar 

  • Nankivell, B. J., & Kuypers, D. R. (2011). Diagnosis and prevention of chronic kidney allograft loss. Lancet, 378, 1428–1437.

    Article  PubMed  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, F. T., Starklint, H., & Dieperink, H. (2005). Impaired glomerular and tubular function as a short-term effect of sirolimus treatment in the rat. American Journal of Nephrology, 25, 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Ozer, J. S., Dieterle, F., Troth, S., Perentes, E., Cordier, A., Verdes, P., Staedtler, F., Mahl, A., Grenet, O., Roth, D. R., Wahl, D., Legay, F., Holder, D., Erdos, Z., Vlasakova, K., Jin, H., Yu, Y., Muniappa, N., Forest, T., Clouse, H. K., Reynolds, S., Bailey, W. J., Thudium, D. T., Topper, M. J., Skopek, T. R., Sina, J. F., Glaab, W. E., Vonderscher, J., Maurer, G., Chibout, S. D., Sistare, F. D., & Gerhold, D. L. (2010). A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nature Biotechnology, 28, 486–494.

    Article  CAS  PubMed  Google Scholar 

  • Psihogios, N. G., Kalaitzidis, R. G., Dimou, S., Seferiadis, K. I., Siamopoulos, K. C., & Bairaktari, E. T. (2007). Evaluation of tubulointerstitial lesions’ severity in patients with glomerulonephritides: An NMR-based metabonomic study. Journal of Proteome Research, 6, 3760–3770.

    Article  CAS  PubMed  Google Scholar 

  • Racusen, L. C., & Regele, H. (2010). The pathology of chronic allograft dysfunction. Kidney International, 78, S27–32.

    Article  Google Scholar 

  • Raulf, F. (2005). Novel biomarkers of allograft rejection: ‘Omics’ approaches start to deliver. Current Opinion in Organ Transplantation, 10, 295–300.

    Article  Google Scholar 

  • Richer, J. P., Baumer, T. H., Gibelin, H., Ben Amor, I., Hebrard, W., Carretier, M., Eugene, M., & Hauet, T. (2000). Evaluation of renal medulla injury after cold preservation and transplantation: noninvasive determination of medullar damage by proton nuclear magnetic resonance spectroscopy of urine and plasma. Transplantation Proceedings, 32, 47–48.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, V., Klawitter, J., Bendrick-Peart, J., Schoening, W., Puhl, G., Haschke, M., Consoer, J., Rivard, C. J., Chan, L., Tran, Z. V., Leibfritz, D., & Christians, U. (2009a). Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation. Nephron Experimental Nephrology, 111, e80–e91.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, V., Klawitter, J., Bendrick-Peart, J., Schoening, W., Puhl, G., Haschke, M., Klawitter, J., Consoer, J., Rivard, C. J., Chan, L., Tran, Z. V., Leibfritz, D., & Christians, U. (2009b). Metabolic profiles in urine reflect nephrotoxicity of sirolimus and cyclosporine following rat kidney transplantation. Nephron Experimental Nephrology, 111, e80–e91.

    Article  CAS  PubMed  Google Scholar 

  • Schroppel, B., & Legendre, C. (2014). Delayed kidney graft function: From mechanism to translation. Kidney International, 86, 251–258.

    Article  PubMed  Google Scholar 

  • Serkova, N., Fuller, T. F., Klawitter, J., Freise, C. E., & Niemann, C. U. (2005). H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney International, 67, 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  • Serkova, N., Klawitter, J., & Niemann, C. U. (2003). Organ-specific response to inhibition of mitochondrial metabolism by cyclosporine in the rat. Transplant International: Official Journal of the European Society for Organ Transplantation, 16, 748–755.

    Article  CAS  Google Scholar 

  • Shockcor, J. P., & Holmes, E. (2002). Metabonomic applications in toxicity screening and disease diagnosis. Current Topics in Medicinal Chemistry, 2, 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Solez, K., Axelsen, R. A., Benediktsson, H., Burdick, J. F., Cohen, A. H., Colvin, R. B., Croker, B. P., Droz, D., Dunnill, M. S., & Halloran, P. F., et al. (1993). International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney International, 44, 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Solez, K., Colvin, R. B., Racusen, L. C., Sis, B., Halloran, P. F., Birk, P. E., Campbell, P. M., Cascalho, M., Collins, A. B., Demetris, A. J., Drachenberg, C. B., Gibson, I. W., Grimm, P. C., Haas, M., Lerut, E., Liapis, H., Mannon, R. B., Marcus, P. B., Mengel, M., Mihatsch, M. J., Nankivell, B. J., Nickeleit, V., Papadimitriou, J. C., Platt, J. L., Randhawa, P., Roberts, I., Salinas-Madriga, L., Salomon, D. R., Seron, D., Sheaff, M., & Weening, J. J. (2007). Banff ‘05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 7, 518–526.

    Article  CAS  Google Scholar 

  • Vaidya, V. S., Ozer, J. S., Dieterle, F., Collings, F. B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D. J., Bobadilla, N. A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P. L., Sistare, F. D., & Bonventre, J. V. (2010). Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nature Biotechnology, 28, 478–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzel Schoening.

Ethics declarations

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Research involving human and animal subjects

No Human Subject research was performed as part of this manuscript. All animal experiments described here were conducted in accordance with the National Institute of Health Guidelines for the Care and Use of Laboratory Animals. Animal Protocols were reviewed and approved by the University of Colorado, Denver, IACUC (Institutional Animal Care and Use Committee).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3890 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoening, W., Schmitz, V., Klawitter, J. et al. Metabolic markers for differentiation between renal allograft rejection and immunosuppressant toxicity in rat urine. Metabolomics 13, 102 (2017). https://doi.org/10.1007/s11306-017-1229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1229-4

Keywords

Navigation