Skip to main content
Log in

Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The analysis of post-mortem metabolomic changes in biological fluids opens the way to develop new methods for the estimation of post-mortem interval (PMI). It may also help in the analysis of disease-induced metabolomic changes in human tissues when the postoperational samples are compared to the post-mortem samples from healthy donors.

Objectives

The goals of this study are to observe and classify the post-mortem changes occurring in the rabbit blood, aqueous and vitreous humors (AH and VH), to identify the potential PMI markers among a wide range of metabolites, and also to determine which biological fluid—blood, AH or VH—is more suitable for the PMI estimation.

Methods

The quantitative metabolomic profiling of samples of the rabbit serum, AH and VH taken at different PMIs has been performed with the combined use of high-frequency NMR and high-resolution LC–MS methods.

Results

The quantitative levels of 61 metabolites in the rabbit serum, AH and VH at different PMIs have been measured. It has been found that the post-mortem metabolomic changes in AH and VH proceed slower than in blood, and the data scattering is lower. Among the metabolites whose concentrations increase with time, the most significant and linear growth is found for hypoxanthine, choline and glycerol.

Conclusion

The obtained results suggest that the ocular fluids AH and VH may have some advantages over blood serum for the search of potential biochemical markers for the PMI estimation. Among the compounds studied in the present work, hypoxanthine, choline and glycerol give the biggest promise as the potential PMI biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Costa, I., Carvalho, F., Magalhães, T., de Pinho, P. G., Silvestre, R., & Dinis-Oliveira, R. J. (2015). Promising blood-derived biomarkers for estimation of the postmortem interval. Toxicology Research, 4(6), 1443–1452.

    Article  CAS  Google Scholar 

  • Cotran, R. S., Kumar, V., & Robbins, S. L. (1994). Cellular injury and cellular death (5th ed.). Philadelphia: W. B. Saunders Company.

    Google Scholar 

  • DiMattio, J. (1989). A comparative study of ascorbic acid entry into aqueous and vitreous humors of the rat and guinea pig. Investigative Ophthalmology & Visual Science, 30(11), 2320–2331.

    CAS  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2013). Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS One, 8(11), e82011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2014). Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences, 46(1), 8–26.

    Article  Google Scholar 

  • Donaldson, A. E., & Lamont, I. L. (2015). Metabolomics of post-mortem blood: Identifying potential markers of post-mortem interval. Metabolomics, 11(1), 237–245.

    Article  CAS  Google Scholar 

  • Gowda, N. G. A., Gowda, Y. N., & Raftery, D. (2015). Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Analytical Chemistry, 87(1), 706–715.

    Article  PubMed  Google Scholar 

  • Gurler, M., Ozturk, G., Kir, M. Z., Ginis, Z., Erden, G., Akyol, S., et al. (2016). Simultaneous analysis of biochemical markers in vitreous humour and serum: A preliminary study on the effect of storage time at −20 °C. Australian Journal of Forensic Sciences, 48(2), 150–158.

    Article  Google Scholar 

  • James, R. A., Hoadley, P. A., & Sampson, B. G. (1997). Determination of postmortem interval by sampling vitreous humour. The American Journal of Forensic Medicine and Pathology, 18(2), 158–162.

    Article  CAS  PubMed  Google Scholar 

  • Janaway, R. C., Percival, S. L., & Wilson, A. S. (2009). Decomposition of human remains. In S. L. Percival (Ed.), Microbiology and aging (pp. 313–334). New York: Humana Press.

    Chapter  Google Scholar 

  • Kryczka, T., Ehlers, N., Nielsen, K., Wylegala, E., Dobrowolski, D., & Midelfart, A. (2013). Metabolic profile of keratoconic cornea. Current Eye Research, 38(2), 305–309.

    Article  CAS  PubMed  Google Scholar 

  • Madea, B., & Rödig, A. (2006). Time of death dependent criteria in vitreous humor: Accuracy of estimating the time since death. Forensic Science International, 164(2–3), 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Palmiere, C., & Mangin, P. (2015). Urea nitrogen, creatinine, and uric acid levels in postmortem serum, vitreous humor, and pericardial fluid. International Journal of Legal Medicine, 129(2), 301–305.

    Article  PubMed  Google Scholar 

  • Poulsen, J. P., Rognum, T. O., Oyasaeter, S., & Saugstad, O. D. (1990). Changes in oxypurine concentrations in vitreous humor of pigs during hypoxemia and post-mortem. Pediatric Research, 28(5), 482–484.

    Article  CAS  PubMed  Google Scholar 

  • Reiss, G. R., Werness, P. G., Zollman, P. E., & Brubaker, R. F. (1986). Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Archives of Ophthalmology, 104(5), 753–755.

    Article  CAS  PubMed  Google Scholar 

  • Rognum, T. O., Hauge, S., Oyasaeter, S., & Saugstad, O. D. (1991). A new biochemical method for estimation of postmortem time. Forensic Science International, 51(1), 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Zaitsu, K., Tsuboi, K., Nomura, M., Kusano, M., Shima, N., et al. (2015). A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Analytical and Bioanalytical Chemistry, 407(13), 3659–3665.

    Article  CAS  PubMed  Google Scholar 

  • Saugstad, O. D. (1975). Hypoxanthine as a measurement of hypoxia. Pediatric Research, 9(4), 158–161.

    Article  CAS  PubMed  Google Scholar 

  • Saugstad, O. D., & Olaisen, B. (1978). Post-mortem hypoxanthine levels in the vitreous humour an introductory report. Forensic Science International, 12(1), 33–36.

    Article  CAS  Google Scholar 

  • Sherin, P. S., Zelentsova, E. A., Sormacheva, E. D., Yanshole, V. V., Duzhak, T. G., & Tsentalovich, Y. P. (2016). Aggregation of α-crystallins in kynurenic acid-sensitized UVA photolysis under anaerobic conditions. Physical Chemistry Chemical Physics, 18(13), 8827–8839.

    Article  CAS  PubMed  Google Scholar 

  • Snytnikova, O. A., Sherin, P. S., Kopylova, L. V., & Tsentalovich, Y. P. (2007). Kinetics and mechanism of reactions of photoexcited kynurenine with molecules of some natural compounds. Russian Chemical Bulletin, 56(4), 732–738.

    Article  CAS  Google Scholar 

  • Streete, I. M., Jamie, J. F., & Truscott, R. J. W. (2004). Lenticular levels of amino acids and free UV filters differ significantly between normals and cataract patients. Investigative Ophthalmology & Visual Science, 45(11), 4091–4098.

    Article  Google Scholar 

  • Swain, R., Kumar, A., Sahoo, J., Lakshmy, R., Gupta, S. K., Bhardwaj, D. N., et al. (2015). Estimation of post-mortem interval: A comparison between cerebrospinal fluid and vitreous humour chemistry. Journal of Forensic and Legal Medicine, 36, 144–148.

    Article  PubMed  Google Scholar 

  • Takata, T., Kitao, T., & Miyaishi, S. (2014). Relationship between post-mortem interval and creatine concentration in vitreous humour and cerebrospinal fluid. Australian Journal of Forensic Sciences, 46(2), 160–165.

    Article  Google Scholar 

  • Tamara, S. O., Yanshole, L. V., Yanshole, V. V., Fursova, A. Z., Stepakov, D. A., Novoselov, V. P., et al. (2016). Spatial distribution of metabolites in the human lens. Experimental Eye Research, 143, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Tsentalovich, Y. P., Verkhovod, T. D., Yanshole, V. V., Kiryutin, A. S., Yanshole, L. V., Fursova, A. Z., et al. (2015). Metabolomic composition of normal aged and cataractous human lenses. Experimental Eye Research, 134, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Tumram, N. K., Bardale, R. V., & Dongre, A. P. (2011). Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. Forensic Science International, 204(1–3), 186–190.

    Article  CAS  PubMed  Google Scholar 

  • Varma, S. D. (1987). Ascorbic acid and the eye with special reference to the lens. Annals of the New York Academy of Sciences, 498(1), 280–306.

    Article  CAS  PubMed  Google Scholar 

  • Yanshole, V. V., Snytnikova, O. A., Kiryutin, A. S., Yanshole, L. V., Sagdeev, R. Z., & Tsentalovich, Y. P. (2014). Metabolomics of the rat lens: A combined LC-MS and NMR study. Experimental Eye Research, 125, 71–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Scientific Foundation (Project No. 14-14-00056) in LC–MS measurements, by FASO Russia (Project No. 0333-2014-0001) in NMR measurements, and by RFBR (Projects Nos. 14-03-00027 and 14-03-00453) in sample preparation. VVY acknowledges the financial support of the President of RF (Project No. MK-5367.2015.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri P. Tsentalovich.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Research involving human participants and/or animals

All animals were treated according to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and the European Union Directive 2010/63/EU on the protection of animals used for scientific purposes, with the ethics clearance from the International Tomography Center SB RAS.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelentsova, E.A., Yanshole, L.V., Snytnikova, O.A. et al. Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics 12, 172 (2016). https://doi.org/10.1007/s11306-016-1118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1118-2

Keywords

Navigation