Skip to main content

Advertisement

Log in

Using a lipidomics approach for nutritional phenotyping in response to a test meal containing gamma-linolenic acid

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Plasma fatty acids are derived from preformed sources in the diet and de novo synthesis through the action of desaturase and elongase enzymes.

Objective

This study was designed to examine the elongation of gamma-linolenic acid (GLA, 18:3n6) into dihomo-gamma-linolenic acid (DGLA, 20:3n6) over an 8-h period using both targeted gas chromatography–flame ionization detection and untargeted liquid chromatography–mass spectrometry-based lipidomics utilizing the sequential window acquisition of all theoretical fragment-ion spectra (SWATH).

Methods

In a single blind, placebo-controlled, crossover design, seven healthy subjects consumed a test meal that consisted of GLA fat (borage oil) or a control fat (a mixture of corn, safflower, sunflower and extra-virgin light olive oils) on three separate test days for each test meal.

Results

Total plasma fatty acid concentrations and 366 unique lipid species were measured at 0, 2, 4, 6 and 8 h in response to the test meals. Mean plasma 18:3n6 was 7-fold higher to the GLA challenge compared with baseline and the control meal. By 8 h, mean plasma 20:3n6 was significantly higher in response to the GLA test meal than baseline and the control group. Five of the seven subjects were “responders” in converting GLA into DGLA, but two subjects did not show this conversion. The conversion was independent of physical activity level.

Conclusion

Using polyunsaturated fatty acid metabolism as an example, this study demonstrates inter-individual differences in enzymatic capacities to inform exact nutritional and metabolic phenotyping that could be used for precision medicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GLA:

Gamma-linolenic acid

GC–FID:

Gas chromatography–flame ionization detection

DGLA:

Dihomo-gamma-linolenic acid

LC–MS:

Liquid chromatography–mass spectrometry

PUFA:

Polyunsaturated fatty acids

References

  • Bamford, J., Ray, S., Musekiwa, A., van Gool, C., Humphreys, R., & Ernst, E. (2013). Oral evening primrose oil and borage oil for eczema. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD004416.pub2.

    PubMed  Google Scholar 

  • Barham, J. B., Edens, M. B., Fonteh, A. N., Johnson, M. M., Easter, L., & Chilton, F. H. (2000). Addition of eicosapentaenoic acid to gamma-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans. The Journal of Nutrition, 130, 1925–1931.

    CAS  PubMed  Google Scholar 

  • Burdge, G., Jones, A., Frye, S., Goodson, L., & Wootton, S. (2003). Effect of meal sequence on postprandial lipid, glucose and insulin responses in young men. European Journal of Clinical Nutrition, 57, 1536–1544. doi:10.1038/sj.ejcn.1601722.

    Article  CAS  PubMed  Google Scholar 

  • Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry, 61, 192–206. doi:10.1016/j.trac.2014.04.017.

    Article  CAS  Google Scholar 

  • Cajka, T., & Fiehn, O. (2016a). Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC–MS of blood plasma. Metabolomics, 12, 34. doi:10.1007/s11306-015-0929-x.

    Article  Google Scholar 

  • Cajka, T., & Fiehn, O. (2016b). Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Analytical Chemistry, 88, 524–545. doi:10.1021/acs.analchem.5b04491.

    Article  PubMed  Google Scholar 

  • Cao, J.-M., Blond, J. P., Juaneda, P., Durand, G., & Bézard, J. (1995). Effect of low levels of dietary fish oil on fatty acid desaturation and tissue fatty acids in obese and lean rats. Lipids, 30, 825–832. doi:10.1007/BF02533958.

    Article  CAS  PubMed  Google Scholar 

  • Chapkin, R. S., Somers, S. D., & Erickson, K. L. (1988). Dietary manipulation of macrophage phospholipid classes: Selective increase of dihomogammalinolenic acid. Lipids, 23, 766–770. doi:10.1007/BF02536219.

    Article  CAS  PubMed  Google Scholar 

  • Cohn, J. S., Johnson, E. J., Millar, J. S., Cohn, S. D., Milne, R. W., Marcel, Y., et al. (1993). Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. Journal of Lipid Research, 34, 2033–2040.

    CAS  PubMed  Google Scholar 

  • Cohn, J., McNamara, J. R., Cohn, S., Ordovas, J., & Schaefer, E. (1988). Plasma apolipoprotein changes in the triglyceride-rich lipoprotein fraction of human subjects fed a fat-rich meal. Journal of Lipid Research, 29, 925–936.

    CAS  PubMed  Google Scholar 

  • Cole, L. K., Vance, J. E., & Vance, D. E. (2012). Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 754–761. doi:10.1016/j.bbalip.2011.09.009.

    Article  CAS  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  PubMed  Google Scholar 

  • Glew, R. H., Okolie, H., Huang, Y. S., Chuang, L. T., Suberu, O., Crossey, M., et al. (2004). Abnormalities in the fatty-acid composition of the serum phospholipids of stroke patients. Journal of the National Medical Association, 96, 826–832.

    PubMed  PubMed Central  Google Scholar 

  • Grapov, D., Wanichthanarak, K., & Fiehn, O. (2015). MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics, 31, 2757–2760. doi:10.1093/bioinformatics/btv194.

    Article  PubMed  Google Scholar 

  • Institute of Medicine, N. A. o. S. (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: National Academy Press.

    Google Scholar 

  • Johnson, M. M., Swan, D. D., Surette, M. E., Stegner, J., Chilton, T., Fonteh, A. N., et al. (1997). Dietary supplementation with γ-linolenic acid alters fatty acid content and eicosanoid production in healthy humans. The Journal of Nutrition, 127, 1435–1444.

    CAS  PubMed  Google Scholar 

  • Kind, T., Liu, K.-H., Lee, D. Y., DeFelice, B., Meissen, J. K., & Fiehn, O. (2013). LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods, 10, 755–758. doi:10.1038/nmeth.2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaitre, R. N., Tanaka, T., Tang, W., Manichaikul, A., Foy, M., Kabagambe, E. K., et al. (2011). Genetic loci associated with plasma phospholipid n-3 fatty acids: A meta-analysis of genome-wide association studies from the CHARGE consortium. PLoS Genetics, 7, e1002193. doi:10.1371/journal.pgen.1002193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, G., Duffin, K., Obukowicz, M., Hummert, S., Fujiwara, H., Needleman, P., et al. (2002). Differential metabolism of dihomo-γ-linolenic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: implications for cellular synthesis of prostaglandin E1 and prostaglandin E2. Biochemical Journal, 365, 489–496. doi:10.1042/BJ20011798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malerba, G., Schaeffer, L., Xumerle, L., Klopp, N., Trabetti, E., Biscuola, M., et al. (2008). SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids, 43, 289–299. doi:10.1007/s11745-008-3158-5.

    Article  CAS  PubMed  Google Scholar 

  • Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., & Schwudke, D. (2008). Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 49, 1137–1146. doi:10.1194/jlr.D700041-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles, E. A., Banerjee, T., & Calder, P. C. (2004). The influence of different combinations of γ-linolenic, stearidonic and eicosapentaenoic acids on the fatty acid composition of blood lipids and mononuclear cells in human volunteers. Prostaglandins Leukotrienes and Essential Fatty Acids, 70, 529–538. doi:10.1016/j.plefa.2003.11.008.

    Article  CAS  Google Scholar 

  • Nakamura, M. T., & Nara, T. Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annual Review of Nutrition, 24, 345–376. doi:10.1146/annurev.nutr.24.121803.063211

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. New York: Macmillan.

    Google Scholar 

  • Obukowicz, M. G., Welsch, D. J., Salsgiver, W. J., Martin-Berger, C. L., Chinn, K. S., Duffin, K. L., et al. (1998). Novel, selective delta6 or delta5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. Journal of Pharmacology and Experimental Therapeutics, 287, 157–166.

    CAS  PubMed  Google Scholar 

  • Rothman, D., DeLuca, P., & Zurier, R. B. (1995). Botanical lipids: Effects on inflammation, immune responses, and rheumatoid arthritis. In Seminars in arthritis and rheumatism, vol 25. Amsterdam: Elsevier, p 87–96.

  • Rzehak, P., Heinrich, J., Klopp, N., Schaeffer, L., Hoff, S., Wolfram, G., et al. (2009). Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. British Journal of Nutrition, 101, 20–26. doi:10.1017/S0007114508992564.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer, L., Gohlke, H., Muller, M., Heid, I. M., Palmer, L. J., Kompauer, I., et al. (2006). Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human Molecular Genetics, 15, 1745–1756. doi:10.1093/hmg/ddl117.

    Article  CAS  PubMed  Google Scholar 

  • Smilowitz, J. T., Wiest, M. M., Teegarden, D., Zemel, M. B., German, J. B., & Van Loan, M. D. (2011). Dietary fat and not calcium supplementation or dairy product consumption is associated with changes in anthropometrics during a randomized, placebo-controlled energy-restriction trial. Nutrition & Metabolism, 8, 67. doi:10.1186/1743-7075-8-67.

    Article  CAS  Google Scholar 

  • Smilowitz, J. T., Zivkovic, A. M., Wan, Y. J. Y., Watkins, S. M., Nording, M. L., Hammock, B. D., et al. (2013). Nutritional lipidomics: Molecular metabolism, analytics, and diagnostics. Molecular Nutrition & Food Research, 57, 1319–1335. doi:10.1002/mnfr.201200808.

    Article  CAS  Google Scholar 

  • Sprecher, H., Luthria, D. L., Mohammed, B., & Baykousheva, S. P. (1995). Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. Journal of Lipid Research, 36, 2471–2477.

    CAS  PubMed  Google Scholar 

  • Stone, K. J., Willis, A. L., Hart, M., Kirtland, S. J., Kernoff, P. B. A., & McNicol, G. P. (1979). The metabolism of dihomo-γ-linolenic acid in man. Lipids, 14, 174–180. doi:10.1007/bf02533869.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. doi:10.1007/s11306-007-0081-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surette, M. E., Koumenis, I. L., Edens, M. B., Tramposch, K. M., & Chilton, F. H. (2003). Inhibition of leukotriene synthesis, pharmacokinetics, and tolerability of a novel dietary fatty acid formulation in healthy adult subjects* 1. Clinical Therapeutics, 25, 948–971. doi:10.1016/S0149-2918(03)80116-9.

    Article  CAS  PubMed  Google Scholar 

  • Surette, M., Swan, D., Fonteh, A., Johnson, M., & Chilton, F. (1996). Metabolism of gammalinolenic acid in human neutrophils. The Journal of Immunology, 156, 2941–2947.

    PubMed  Google Scholar 

  • Tai, Y. C., & Speed, T. P. (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. The Annals of Statistics, 34, 2387–2412. doi:10.1214/009053606000000759.

    Article  Google Scholar 

  • Tanaka, T., Shen, J., Abecasis, G., Kisialiou, A., Ordovas, J., Guralnik, J., et al. (2009). Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genetics, 5, e1000338. doi:10.1371/journal.pgen.1000338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12, 523–526. doi:10.1038/nmeth.3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeda-Sawada, R., Takahashi, N., & Igarashi, O. (1995). Interaction of sesamin and eicosapentaenoic acid against Δ 5 desaturation and n-6/n-3 ratio of essential fatty acids in rat. Bioscience, Biotechnology, and Biochemistry, 59, 2268–2273.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Botolin, D., Christian, B., Busik, J., Xu, J., & Jump, D. B. (2005). Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. Journal of Lipid Research, 46, 706–715. doi:10.1194/jlr.M400335-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Botolin, D., Xu, J., Christian, B., Mitchell, E., Jayaprakasam, B., et al. (2006). Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. Journal of Lipid Research, 47, 2028–2041. doi:10.1194/jlr.M600177-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziboh, V. A., & Fletcher, M. P. (1992). Dose-response effects of dietary gamma-linolenic acid-enriched oils on human polymorphonuclear-neutrophil biosynthesis of leukotriene B4. The American Journal of Clinical Nutrition, 55, 39.

    CAS  PubMed  Google Scholar 

  • Zivkovic, A., Wiest, M., Nguyen, U., Nording, M., Watkins, S., & German, J. (2009). Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics, 5, 209–218. doi:10.1007/s11306-008-0136-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was made possible in part by support from the National Institute of Environmental Health Sciences (NIEHS) (P42ES004699), NIEHS R01 ES002710, NIEHS Superfund Research Program P42 ES011269; the CHARGE study (P01 ES11269); West Coast Metabolomics Center (NIH U24 DK097154) and instrument support (NIH 1S10RR031630-01), cardiovascular research (NIH P20 HL113452) and USDA Agricultural Research Service Projects 5306-51000-016-00D, 5306-51000-019-00D and 2032-51530-022-00D. We would like to thank Dr. Vincent Ziboh in loving memory for his inspiration and insight for this project. We would like to thank the staff at the USDA, ARS, Western Human Nutrition Research Center, Davis, CA, for clinical, laboratory and kitchen support. The USDA is an equal opportunity provider and employer. We thank the study participants for their time efforts to commit to the study procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer T. Smilowitz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All participants provided written informed consent and the Institutional Review Board of University of California Davis approved all aspects of the project (Protocol # 200715069).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cajka, T., Davis, R., Austin, K.J. et al. Using a lipidomics approach for nutritional phenotyping in response to a test meal containing gamma-linolenic acid. Metabolomics 12, 127 (2016). https://doi.org/10.1007/s11306-016-1075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1075-9

Keywords

Navigation