Skip to main content
Log in

GC–MS based metabolite profiling for flavor characterization of Brassica crops grown with different fertilizer application

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In order to supply pleasant foods in ordinal dietary, improving crop quality by applying effective growth conditions is a desirable but challenging approach. In this study, to determine the sensory quality of mizuna (Brassica rapa L. var. Nipposinica), one of a Brassica leafy crops grown with different fertilizer application, GC–MS based hydrophilic metabolites and volatiles as well as sensory attributes were measured. Clusters of applied fertilizer condition were significantly divided between with or without manure amendments within all the variances including sensory and metabolite data. Projection to latent structures regression analyzes revealed that l-glutamine, l-asparagine, and other amino acids negatively correlated with bitterness, whereas raffinose, maltose, and malic acid positively correlated with bitterness. Furthermore glucosinolate breakdown products, particularly allyl isothiocyanate revealed a strong positive correlation with Brassica specific wasabi-like sharpness. Based on the comprehensive view of both metabolite and sensory profiling, the perspective for improvement in sensory quality is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Automated Mass Spectral Deconvolution and Identification System (AMDIS) program. http://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:amdis.

  • Baik, H. Y., Juvik, J. A., Jeffery, E. H., Wallig, M. A., Kushad, M., & Klein, B. P. (2003). Relating glucosinolate content and flavor of Broccoli cultivars. Journal of Food Science, 68, 1043–1050.

    Article  CAS  Google Scholar 

  • Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., et al. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41, 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Barthélémy, D., & Caraglio, Y. (2007). Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99, 375–407.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceeding of the National Academy of Science, 96, 5952–5959.

    Article  CAS  Google Scholar 

  • Champagne, E. T., Bett-Garber, K. L., McClung, A. M., & Bergman, C. (2004). Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors. Cereal Chemistry, 81, 237–243.

    Article  CAS  Google Scholar 

  • Chew, F. (1988). Biological effects of glucosinolates. In H. Cutler (Ed.), Biologically active natural product (pp. 155–181). Washington, DC: ACS Publications.

    Chapter  Google Scholar 

  • Drewnowski, A., & Gomez-Carneros, C. (2000). Bitter taste, phytonutrients, and the consumer: A review. The American Journal of Clinical Nutrition, 72, 1424–1435.

    CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, T., Okazaki, K., & Shinano, T. (2013). Aroma characteristic and volatile profiling of carrot varieties, and quantitative role of terpenoid compounds for carrot sensory attributes. Journal of Food Science, 78, 1800–1806.

    Article  Google Scholar 

  • Grubb, D., & Abel, S. (2006). Glucosinolate metabolism and its control. Trends in Plant Science, 11, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Guedes de Pinho, P., Valentão, P., Gonçalves, P., Sousa, C., Seabra, R., & Andrade, P. (2009). Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 23, 2292–2300.

    Article  CAS  Google Scholar 

  • Hansen, M., Laustsen, A. M., Olsen, C. E., Poll, L., & Sørensen, H. (1997). Chemical and sensory quality of Broccoli (Brassica oleracea L. var Italica). Journal of Food Quality, 20, 441–459.

    Article  CAS  Google Scholar 

  • Hirai, M. Y., Sugiyama, K., Sawada, Y., et al. (2007). Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceeding of the National Academy of Science, 104, 6478–6483.

    Article  CAS  Google Scholar 

  • ISO 11035. (1994). Sensory analysis—Identification and selection of descriptors for establishing a sensory profile by a multidimensional approach. Genève: International Organization for Standardization.

    Google Scholar 

  • Jean-Marie, T., & Claude, N. (2001). Responses of the ant Lasiud niger to various compounds perceived as sweetness in humans: A structure-activity relationship study. Chemical Senses, 26, 231–237.

    Article  Google Scholar 

  • Johansson, L., Haglund, Å., Berglund, L., Lea, P., & Risvic, E. (1999). Preference for tomatoes, affected by sensory attributes and information about growth conditions. Food Quality and Preference, 10, 289–298.

    Article  Google Scholar 

  • Kawai, M., Sekine-Hayakawa, Y., Okiyama, A., & Ninomiya, Y. (2012). Gustatory sensation of l- and d-amino acids in humans. Amino Acids, 43, 2349–2358.

    Article  CAS  PubMed  Google Scholar 

  • Kim Lam, T., Gallicchio, L., Lindsley, K., et al. (2009). Cruciferous vegetable consumption and lung cancer risk: A systematic review. Cancer Epidemiology, Biomarkers and Prevention, 18, 184–195.

    Article  Google Scholar 

  • Markus, R. W. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery, 4, 594–610.

    Article  Google Scholar 

  • Noble, A., Philbrick, K., & Boulton, R. (1986). Comparison of sourness of organic acid anions at equal pH and equal titratalble acidity. Journal of Sensory Studies, 1, 1–8.

    Article  CAS  Google Scholar 

  • Okazaki, K., Oka, N., Shinano, T., Osaki, M., & Takebe, M. (2008). Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution. Plant Cell Physiology, 49, 170–177.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, K., Oka, N., Shinano, T., Osaki, M., & Takebe, M. (2009). Metabolite profiling of spinach (Spinacia oleracea L.) leaves by altering the ratio of NH4 +/NO3 in the culture solution. Soil Science and Plant Nutrition, 55, 496–504.

    Article  CAS  Google Scholar 

  • Okazaki, K., Shinano, T., Oka, N., & Takebe, M. (2010). Metabolite profiling of Raphanus sativus L. to evaluate the effects of manure amendment. Soil Science and Plant Nutrition, 56, 591–600.

    Article  Google Scholar 

  • Okazaki, K., Shinano, T., Oka, N., & Takebe, M. (2012). Metabolite profiling of Komatsuna (Brassica rapa L.) field-grown under different soil organic amendment and fertilization regimes. Soil Science and Plant Nutrition, 58, 696–706.

    Article  CAS  Google Scholar 

  • Padilla, G., Cartea, M. E., Velasco, P., de Haro, A., & Ordás, A. (2007). Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 68, 536–545.

    Article  CAS  PubMed  Google Scholar 

  • Ratzka, A., Vogel, H., Kliebenstein, D., Mitchell-Olds, T., & Kroymann, J. (2002). Disarming the mustard oil bomb. Proceeding of the National Academy of Science, 99, 11223–11228.

    Article  CAS  Google Scholar 

  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Schonhof, I., Krumbein, A., & Brückner, B. (2004). Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Molecular Nutrition & Food Research, 48, 25–33.

    CAS  Google Scholar 

  • Sugiura, T., Ogawa, H., Fukuda, N., & Moriguchi, T. (2013). Changes in the taste and textural attributes of apples in response to climate change. Scientific Reports, 3, 2418–2424.

    Article  PubMed Central  PubMed  Google Scholar 

  • Talavera-Bianchi, M., Adhikari, K., Chambers, E., Carey, E., & Chambers, H. (2010). Relation between developmental stage, sensory properties, and volatile content of organically and conventionally grown pac choi (Brassica rapa var. Mei Qing Choi). Journal of Food Science, 75, 173–181.

    Article  Google Scholar 

  • Tikunov, Y., Lommen, A., Ric de Vos, C. H., et al. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139, 1125–1137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tikunov, Y., Verstappen, F., & Hall, R. (2007). Metabolomic profiling of natural volatiles, headspace trapping: GC–MS. In W. Weckwerth (Ed.), Methods in molecular biology (Vol. 358, pp. 39–53)., Metabolomics: Methods and Protocols Totowa: Humana Press Inc.

    Google Scholar 

  • Watanabe, A., Okazaki, K., Watanabe, T., Osaki, M., & Shinano, T. (2013). Metabolite profiling of Mizuna (Brassica rapa L. var. Nipponsinica) to evaluate the effects of organic matter amendments. Journal of Agricultural and Food Chemistry, 61, 1009–1016.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of Agro-environmental Research Division (NARO/HARC), Research Support Center (NARO/HARC) and Ms. Aya Fukuda for assistance and management of the experiment. Furthermore, we thank Dr. Shuji Shibata for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Fukuda.

Ethics declarations

Conflicts of interest

Author T.F, K.O, A.W, T.S, N.O declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all sensory panelists included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 58 kb)

Supplementary material 2 (PPTX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, T., Okazaki, K., Watanabe, A. et al. GC–MS based metabolite profiling for flavor characterization of Brassica crops grown with different fertilizer application. Metabolomics 12, 20 (2016). https://doi.org/10.1007/s11306-015-0938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-015-0938-9

Keywords

Navigation