Skip to main content

Advertisement

Log in

Nucleoside recycling in the brain and the nucleosidome: a complex metabolic and molecular cross-talk between the extracellular nucleotide cascade system and the intracellular nucleoside salvage

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The transports of nucleosides from blood into neurons and astrocytes are essential prerequisites to enter their metabolic utilization in brain. Adult brain does not possess the de novo nucleotide synthesis, and maintains its nucleotide pools by salvaging preformed nucleosides imported from liver. Once nucleosides enter the brain through the blood brain barrier and the nucleoside transporters, they become obligatory precursors for the synthesis of RNA and DNA and a plethora of other important functions. However, an aliquot of nucleotides are transferred into vesicular nucleotide transporters, and then in the extracellular space by exocytosis of the vesicles, where ATP and UTP interact with a vast heterogeneity of purine and pyrimidine receptors. Their signal actions are terminated by the ectonucleotidase cascade system, which degrades ATP and UTP into adenosine and uridine, respectively. The low specificity of the vesicular nucleotide transporters may explain the presence in the extracellular space of GTP and CTP, which are equally degraded to their respective nucleosides by the ectonucleotidases. The main four nucleosides are re-imported either into the same cell, or in adjacent cells, e.g. between two astrocytes, or between a neuron and an astrocyte, to regenerate nucleoside triphosphates. The molecular network of this metabolic cross-talk, involving the ectonucleotidases, the nucleoside transporters, the nucleotide salvage system, the nucleotide transport into the vesicular nucleotide transporters, and the exocytotic release of nucleotides, called by us the “nucleosidome”, serves the nucleoside recycling in the brain, with a considerable spatial–temporal advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ado:

Adenosine

Cyd:

Cytidine

CNT:

Concentrative nucleoside transporter

ENT:

Equilibrative nucleoside transporter

Guo:

Guanosine

HPRT:

Hypoxanthine–guanine phosphoribosyltransferase

Ino:

Inosine

NDP:

Nucleoside diphosphate

NMP:

Nucleoside monophosphate

NTP:

Nucleoside triphosphate

NS:

Nucleoside

SV:

Synaptic vesicle

Urd:

Uridine

VNuT:

Vesicular nucleotide transporter

V-ATPase:

Vesicular ATPase

References

  • Abbracchio, M. P., Burnstock, G., Verkhratsky, A., & Zimmermann, H. (2009). Purinergic signalling in the nervous system: An overview. Trends in Neurosciences, 32, 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Allsop, J., & Watts, R. W. (1983). Purine de novo synthesis in liver and developing rat brain, and the effect of some inhibitors of purine nucleotide interconversion. Enzyme, 30, 172–180.

    CAS  PubMed  Google Scholar 

  • Allsop, J., & Watts, R. W. (1984). Purine synthesis and salvage in brain and liver. Advances in Experimental Medicine and Biology, 165, 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, S., Duley, J. A., & Christodoulou, J. (2014a). Inborn errors of purine metabolism: Clinical updates and therapies. Journal of Inherited Metabolic Disease, 37, 669–686.

    Article  Google Scholar 

  • Balasubramanian, S., Duley, J. A., & Christodoulou, J. (2014b). Inborn errors of pyrimidine metabolism: Clinical update and therapies. Journal of Inherited Metabolic Disease, 37, 687–698.

    Article  Google Scholar 

  • Baldwin, S. A., Beal, P. R., Yao, S. Y. M., King, A. E., Cass, C. E., & Young, J. D. (2004). The equilibrative nucleoside transporter family, SLC29. European Journal of Physiology, 447, 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Balestri, F., Barsotti, C., Lutzemberger, L., Camici, M., & Ipata, P. L. (2007). Key role of uridine kinase and uridine phosphorylase in the homeostatic regulation of purine and pyrimidine salvage in brain. Neurochemistry International, 51, 517–523.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Evan, A., Flamholz, A., Noor, E., & Milo, R. (2012). Rethinking glycolysis: On the biochemical logic of metabolic pathways. Nature Chemical Biology, 8, 509–517.

    Article  Google Scholar 

  • Barsotti, C., & Ipata, P. L. (2004). Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. International Journal of Biochemistry & Cell Biology, 36, 2214–2225.

    Article  CAS  Google Scholar 

  • Bourget, P. A., & Trembly, G. C. (1972). Pyrimidine biosynthesis in rat brain. Journal of Neurochemistry, 19(7), 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  • Burnstock, G. (2004). Cotransmission. Current Opinion in Pharmacology, 4(1), 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Cansev, M. (2006). Uridine and cytidine in the brain; their transport and utilization. Brain Research Reviews, 52, 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Cory, J. G. (2006) Purine and pyrimidine nucleotide metabolism. In T. M. Devlin (Ed.), Textbook of biochemistry with clinical correlations. (vol. 6, pp. 789–822). New York: Whiley-Liss.

  • Gauthier-Kemper, A., Kahms, M., & Klingauf, J. (2015). Restoring synaptic vesicles during compensatory endocytosis. Assays in Biochemistry, 57, 121–134.

    Google Scholar 

  • Giuliani, P., Ballerini, P., Buccella, S., Ciccarelli, R., Rathbone, M. P., Romano, S., et al. (2015). Guanosine protect glial cells against 6-hydroxydopamine toxicity. Advances in Experimental Medicine and Biology, 837, 23–33.

    Article  PubMed  Google Scholar 

  • Giuliani, P., Romano, S., Ballerini, P., Ciccarelli, R., Petragnani, N., Cicchitti, S., et al. (2012). Protective activity of guanosine in an in vitro model of Parkinson’s disease. Panminerva Medica, 54, 43–51.

    CAS  PubMed  Google Scholar 

  • Gray, J. H., Owen, R. P., & Giacomini, K. M. (2004). The concentrative nucleoside transporter family. European Journal of Physiology, 447, 728–734.

    Article  CAS  PubMed  Google Scholar 

  • Ipata, P. L. (2013). Brain nucleoside recycle. Metabolomics, 9, 271–279.

    Article  CAS  Google Scholar 

  • Ipata, P. L., Balestri, F., Camici, M., & Tozzi, M. G. (2011a). Molecular mechanisms of nucleoside recycling in the btrain. International Journal of Biochemistry & Cell Biology, 43, 140–145.

    Article  CAS  Google Scholar 

  • Ipata, P. L., Barsotti, C., Tozzi, M. G., Camici, M., & Balestri, F. (2010). Metabolic interplay between intra- and extra-cellular uridine metabolism via an ATP driver uridine-UTP cycle in brain. International Journal of Biochemistry & Cell Biology, 42, 932–937.

    Article  CAS  Google Scholar 

  • Ipata, P. L., Camici, M., Micheli, V., & Tozzi, M. G. (2011b). Metabolic network of nucleosides in the brain. Current Topics in Medicinal Chemistry, 11, 909–922.

    Article  CAS  PubMed  Google Scholar 

  • Ipata, P. L., & Pesi, R. (2015). What is the true nitrogenase reaction? A guided approach. Biochemistry and Molecular Biology Education, 43, 122–124.

    Article  Google Scholar 

  • Johnson, R. G. (1988). Accumulation of biological amines into chromaffin granules. A model for hormone and neurotransmitter transport. Physiological Reviews, 68, 232–507.

    CAS  PubMed  Google Scholar 

  • Jolivet, R., Magistretti, P. J., & Weber, B. (2009). Deciphering neuron-glia compartimentalization in cortical energy metabolism. Front Neuroenergetic, 1, 1–10.

    Article  Google Scholar 

  • Jureka, A. (2009). Inborn errors of purine and pyrimidine metabolism. Journal of Inherited Metabolic Disease, 32, 247–263.

    Article  Google Scholar 

  • Kahkh, B. S. (2001). Molecular physiology of P2X receptors and ATP signaling at synapses. Nature Reviews Neuroscience, 2, 165–174.

    Article  Google Scholar 

  • Kovacs, Z., Dobolyi, A., Juhasz, G., & Kekesi, K. A. (2010). Nucleoside map of the human central nervous system. Neurochemical Research, 35, 452–464.

    Article  CAS  PubMed  Google Scholar 

  • Kovács, Z., Juhasz, G., Palkovits, M., Dobolyi, A., & Kekesi, K. A. (2011). Area, age and gender dependence of the nucleoside system in the brain: A review of current literature. Current Topics in Medicinal Chemistry, 11, 1012–1033.

    Article  PubMed  Google Scholar 

  • Lazarowski, E. R., & Bucher, R. C. (2001). UTP as an extracellular signaling molecule. News in Physiological Sciences, 16, 1–5.

    CAS  PubMed  Google Scholar 

  • Lecca, D., & Ceruti, S. (2008). Uracil nucleotides: From metabolic intermediates to neuroprotection and inflammation. Biochemical Pharmacology, 75, 1869–1881.

    Article  CAS  PubMed  Google Scholar 

  • Menendez-Mendez, A., Diaz-Hernandez, J. I., & Miras-Portugal, M. T. (2015). The vesicular nucleotide transporter (VNut) is involved in the extracellular ATP effect on neuronal differentiation. Purinergic Signaling, 11, 239–249.

    Article  CAS  Google Scholar 

  • Micheli, V., Camici, M., Tozzi, M. G., Ipata, P. L., Sestini, S., Bertelli, M., & Pompucci, G. (2011). Neurological disorders of purine and pyrimidine metabolism. Current Topics in Medicinal Chemistry, 11, 923–947.

    Article  CAS  PubMed  Google Scholar 

  • Norenberg, W., & Illes, P. (2000). Neuronal P2X receptors: Localization and functional properties. Naunyin Schmiedebergs Archives of Pharmacology, 362, 324–339.

    Article  CAS  PubMed  Google Scholar 

  • Nyhan, W. L. (2005). Disorders of purine and pyrimidine metabolism. Molecular Genetics and Metabolism, 86, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Pankratov, Y., Lalo, U., Verkhratsky, A., & North, R. A. (2006). Vesicular release of ATP at central synapses. Pflügers Archiv, 452, 589–597.

    Article  CAS  PubMed  Google Scholar 

  • Pankratov, Y., Lalo, U., Verkhratsky, A., & North, R. A. (2007). Quantal release of ATP in mouse cortex. Journal of General Physiology, 129, 257–265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkinson, F. E., Damaraju, V. L., Graham, K., Yao, S. Y., Baldwin, S. A., Cass, C. E., & Young, J. D. (2011). Molecular biology of nucleoside transporters and their distributions and functions in the brain. Current Topics in Medicinal Chemistry, 11, 948–972.

    Article  CAS  PubMed  Google Scholar 

  • Rathbone, M. P., Middlemiss, P. J., Gysbers, J. W., Andrew, C., Herman, M. A., Reed, J. K., et al. (1999). Trophic effects of purines in neurons and glial cells. Progress in Neurobiology, 59, 663–690.

    Article  CAS  PubMed  Google Scholar 

  • Reimer, P. J., & Edwards, R. H. (2004). Organic anion transport is the primary function of the SLC17/type 1 phosphate transporte family. Pflügers Archiv, 447, 629–635.

    Article  CAS  PubMed  Google Scholar 

  • Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise induced metabolic acidosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287, R502–R516.

    CAS  PubMed  Google Scholar 

  • Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuga, M., Omote, H., et al. (2008). Identification of a vesicular nucleotide transporter. Proceedings of the National Academy of Sciences, 105, 5683–5686.

    Article  CAS  Google Scholar 

  • Schuldiner, S., Shirvan, A., & Linian, M. (1995). Vesicular neurotransmitter transporters: From bacteria to humans. Physiological Reviews, 75, 369–392.

    CAS  PubMed  Google Scholar 

  • Volonté, C., & D’Ambrosi, N. (2008). Membrane compartments and purinergic signaling: The purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS Journal, 276, 318–329.

    Article  PubMed  Google Scholar 

  • Wurtman, R. J. (2008). Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism, 57(Suppl 2), S6–S10. doi:10.1016/j.metabol.2008.07.007.

    Google Scholar 

  • Wurtman, R. J., Cansev, M., Sakamoto, T., & Ulus, I. H. (2009). Use of phosphatide precursors to promote synaptogenesis. Annual Review of Nutrition, 29, 59–87.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, H. (1992). 5′-Nucleotidase: Molecular structure and functional aspects. Biochemical Journal, 285, 345–365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann, H. (1996). Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Progress in Neurobiology, 49, 589–618.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, H. (2006). Ecto-nucleotidases in the nervous system. In Novartis foundation symposium 276 purinergic signalling in neuron-glial interaction (pp. 113–128). New york: Wiley.

  • Zimmermann, H. (2008). ATP acetylcholine equal brethren. Neurochemistry International, 52, 634–648.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Giovanni Cercignani for useful discussion on synaptic vesicle structure and function.

Funding

This study was supported by local funds of University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Luigi Ipata.

Ethics declarations

Conflict of interest

Author Piero Luigi Ipata declares that he has no conflict of interest. Author Rossana Pesi declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipata, P.L., Pesi, R. Nucleoside recycling in the brain and the nucleosidome: a complex metabolic and molecular cross-talk between the extracellular nucleotide cascade system and the intracellular nucleoside salvage. Metabolomics 12, 22 (2016). https://doi.org/10.1007/s11306-015-0931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-015-0931-3

Keywords

Navigation