Skip to main content

Advertisement

Log in

Electroacupuncture may alleviate diabetic neuropathic pain by inhibiting the microglia P2X4R and neuroinflammation

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Diabetic neuropathic pain (DNP) is a common and destructive complication of diabetes mellitus. The discovery of effective therapeutic methods for DNP is vitally imperative because of the lack of effective treatments. Although 2 Hz electroacupuncture (EA) was a successful approach for relieving DNP, the mechanism underlying the effect of EA on DNP is still poorly understood. Here, we established a rat model of DNP that was induced by streptozotocin (STZ) injection. P2X4R was upregulated in the spinal cord after STZ-injection. The upregulation of P2X4R was mainly expressed on activated microglia. Intrathecal injection of a P2X4R antagonist or microglia inhibitor attenuated STZ-induced nociceptive thermal hyperalgesia and reduced the overexpression of brain-derived neurotrophic factor (BDNF), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. We also assessed the effects of EA treatment on the pain hypersensitivities of DNP rats, and further investigated the possible mechanism underlying the analgesic effect of EA. EA relieved the hyperalgesia of DNP. In terms of mechanism, EA reduced the upregulation of P2X4R on activated microglia and decreased BDNF, IL-1β and TNF-α in the spinal cord. Mechanistic research of EA's analgesic impact would be beneficial in ensuring its prospective therapeutic effect on DNP as well as in extending EA's applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fan W (2017) Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol 6(1):8–16. https://doi.org/10.1097/XCE.0000000000000116

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abbott CA, Malik RA, van Ross ERE, Kulkarni J, Boulton AJM (2011) Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 34(10):2220–2224. https://doi.org/10.2337/dc11-1108

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deng Z, Li C, Liu C, Du E, Xu C (2018) Catestatin is involved in neuropathic pain mediated by purinergic receptor P2X4 in the spinal microglia of rats. Brain Res Bull 142:138–146. https://doi.org/10.1016/j.brainresbull.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  4. Teng Y, Zhang Y, Yue S, Du E, Xu C (2019) Intrathecal injection of bone marrow stromal cells attenuates neuropathic pain via inhibition of P2X4R in spinal cord microglia. J Neuroinflammation 16(1):271. https://doi.org/10.1186/s12974-019-1631-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan Y, Liang Y, Ding T, Chu H (2019) PI3K/Akt signaling pathway may be involved in MCP-1-induced P2X4R expression in cultured microglia and cancer-induced bone pain rats. Neurosci Lett 701:100–105. https://doi.org/10.1016/j.neulet.2019.02.024

    Article  CAS  PubMed  Google Scholar 

  6. Tsuda M (2016) Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 7(1):17–26. https://doi.org/10.1111/jdi.12379

    Article  CAS  PubMed  Google Scholar 

  7. Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K (2013) Microglial regulation of neuropathic pain. J Pharmacol Sci 121(2):89–94. https://doi.org/10.1254/jphs.12r14cp

    Article  CAS  PubMed  Google Scholar 

  8. Tsuda M, Inoue K (2016) Neuron-microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology 104:76–81. https://doi.org/10.1016/j.neuropharm.2015.08.042

    Article  CAS  PubMed  Google Scholar 

  9. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45. https://doi.org/10.3389/fncel.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim C, Lee JH, Kim W, Li D, Kim Y, Lee K, Kim SK (2016) The Suppressive Effects of Cinnamomi Cortex and Its Phytocompound Coumarin on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats. Molecules 21(9):1253. https://doi.org/10.3390/molecules21091253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G, Xiang ZH, Yuan HB (2017) Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 13(1):13–26. https://doi.org/10.1007/s11302-016-9537-0

    Article  CAS  PubMed  Google Scholar 

  12. Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13(7):533–548. https://doi.org/10.1038/nrd4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19(3):138–152. https://doi.org/10.1038/nrn.2018.2

    Article  CAS  PubMed  Google Scholar 

  14. Peltier A, Goutman SA, Callaghan BC (2014) Painful diabetic neuropathy. BMJ 348:1799. https://doi.org/10.1136/bmj.g1799

    Article  Google Scholar 

  15. Snyder MJ, Gibbs LM, Lindsay TJ (2016) Treating Painful Diabetic Peripheral Neuropathy: An Update. Am Fam Physician 94(3):227–234

    PubMed  Google Scholar 

  16. Lv ZT, Shen LL, Zhu B, Zhang ZQ, Ma CY, Huang GF, Yin J, Yu LL, Yu SY, Ding MQ, Li J, Yuan XC, He W, Jing XH, Li M (2019) Effects of intensity of electroacupuncture on chronic pain in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res Ther 21(1):120. https://doi.org/10.1186/s13075-019-1899-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Seo SY, Lee KB, Shin JS, Lee J, Kim MR, Ha IH, Ko Y, Lee YJ (2017) Effectiveness of Acupuncture and Electroacupuncture for Chronic Neck Pain: A Systematic Review and Meta-Analysis. Am J Chin Med 45(8):1573–1595. https://doi.org/10.1142/S0192415X17500859

    Article  PubMed  Google Scholar 

  18. He XF, Wei JJ, Shou SY, Fang JQ, Jiang YL (2017) Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion. J Zhejiang Univ Sci B 18(3):239–248. https://doi.org/10.1631/jzus.B1600247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin KM, Lee S, Lee EY, Kim CH, Kang JW, Lee CK, Seo BN, Kim AR, Jung SY, Kwon O, Choi SM (2018) Electroacupuncture for Painful Diabetic Peripheral Neuropathy: A Multicenter, Randomized, Assessor-Blinded. Controlled Trial Diabetes Care 41(10):141–142. https://doi.org/10.2337/dc18-1254

    Article  Google Scholar 

  20. Wang F, Ma J, Han F, Guo X, Meng L, Sun Y, Jin C, Duan H, Li H, Peng Y (2016) DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep 6:19396. https://doi.org/10.1038/srep19396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J (2018) Activation of spinal dorsal horn P2Y13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 11:615–628. https://doi.org/10.2147/JPR.S154437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erbaş O, Oltulu F, Yılmaz M, Yavaşoğlu A, Taşkıran D (2016) Neuroprotective effects of chronic administration of levetiracetam in a rat model of diabetic neuropathy. Diabetes Res Clin Pract 114:106–116. https://doi.org/10.1016/j.diabres.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  23. Manitz MP, Plümper J, Demir S, Ahrens M, Eßlinger M, Wachholz S, Eisenacher M, Juckel G, Friebe A (2016) Flow cytometric characterization of microglia in the offspring of PolyI: C treated mice. Brain Res 1636:172–182. https://doi.org/10.1016/j.brainres.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  24. Hao L, Mi J, Song L, Guo Y, Li Y, Yin Y, Zhang C (2021) SLC40A1 Mediates Ferroptosis and Cognitive Dysfunction in Type 1 Diabetes. Neuroscience 463:216–226. https://doi.org/10.1016/j.neuroscience.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  25. El-Hossary N, Hassanein H, El-Ghareeb AW, Issa H (2016) Intravenous vs intraperitoneal transplantation of umbilical cord mesenchymal stem cells from Wharton’s jelly in the treatment of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 121:102–111. https://doi.org/10.1016/j.diabres.2016.09.008

    Article  PubMed  Google Scholar 

  26. Qin Z, Wang L, Li G, Qian X, Zhang J, Guo Y, Liu G (2020) Analysis of the analgesic effects of tricyclic antidepressants on neuropathic pain, diabetic neuropathic pain, and fibromyalgia in rat models. Saudi J Biol Sci 27(9):2485–2490. https://doi.org/10.1016/j.sjbs.2020.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546

    CAS  PubMed  Google Scholar 

  28. Morrow TJ (2004) Animal models of painful diabetic neuropathy: the STZ rat model. Curr Protoc Neurosci Chapter 9:Unit 9.18 https://doi.org/10.1002/0471142301.ns0918s29

  29. Cheng KI, Wang HC, Chuang YT, Chou CW, Tu HP, Yu YC, Chang LL, Lai CS (2014) Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats. Eur J Pain 18(2):162–173. https://doi.org/10.1002/j.1532-2149.2013.00356.x

    Article  CAS  PubMed  Google Scholar 

  30. Sun JS, Yang YJ, Zhang YZ, Huang W, Li ZS, Zhang Y (2015) Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. Mol Med Rep 12(2):2677–2682. https://doi.org/10.3892/mmr.2015.3735

    Article  CAS  PubMed  Google Scholar 

  31. Colburn RW, DeLeo JA, Rickman AJ, Yeager MP, Kwon P, Hickey WF (1997) Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol 79(2):163–175. https://doi.org/10.1016/s0165-5728(97)00119-7

    Article  CAS  PubMed  Google Scholar 

  32. Schwab JM, Guo L, Schluesener HJ (2005) Spinal cord injury induces early and persistent lesional P2X4 receptor expression. J Neuroimmunol 163(1–2):185–189. https://doi.org/10.1016/j.jneuroim.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  33. Vázquez-Villoldo N, Domercq M, Martín A, Llop J, Gómez-Vallejo V, Matute C (2014) P2X4 receptors control the fate and survival of activated microglia. Glia 62(2):171–184. https://doi.org/10.1002/glia.22596

    Article  PubMed  Google Scholar 

  34. Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, Perez-Samartín A, Pulagam KR, Lukowiak M, Capetillo-Zarate E, Llop J, Magnus T, Koch-Nolte F, Rassendren F, Matute C, Domercq M (2018) P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med 10(8):8743. https://doi.org/10.15252/emmm.201708743

    Article  CAS  Google Scholar 

  35. Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats. Neuroscience 152(2):495–501. https://doi.org/10.1016/j.neuroscience.2007.12.042

    Article  CAS  PubMed  Google Scholar 

  36. Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19(10):622–635. https://doi.org/10.1038/s41583-018-0057-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027. https://doi.org/10.1038/nm.4397

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Yi S, Xiao C, Li Y, Liu C, Jiang W, Yang C, Zhou T (2020) Asperosaponin VI inhibits LPS-induced inflammatory response by activating PPAR-γ pathway in primary microglia. Saudi J Biol Sci 27(11):3138–3144. https://doi.org/10.1016/j.sjbs.2020.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590. https://doi.org/10.1038/nrd2605

    Article  CAS  PubMed  Google Scholar 

  40. Khakh BS, North RA (2012) Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76(1):51–69. https://doi.org/10.1016/j.neuron.2012.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Inoue K (2021) Nociceptive signaling of P2X receptors in chronic pain states. Purinergic Signalling 17(1):41–47. https://doi.org/10.1007/s11302-020-09743-w

    Article  CAS  PubMed  Google Scholar 

  42. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783. https://doi.org/10.1038/nature01786

    Article  CAS  PubMed  Google Scholar 

  43. Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28. https://doi.org/10.1186/1744-8069-5-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28(44):11263–11268. https://doi.org/10.1523/JNEUROSCI.2308-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tozaki-Saitoh H, Masuda J, Kawada R, Kojima C, Yoneda S, Masuda T, Inoue K, Tsuda M (2019) Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Glia 67(4):729–740. https://doi.org/10.1002/glia.23570

    Article  PubMed  Google Scholar 

  46. Miao J, Ding M, Zhang A, Xiao Z, Qi W, Luo N, Di W, Tao Y, Fang Y (2012) Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway. Neurosci Res 74(3–4):269–276. https://doi.org/10.1016/j.neures.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  47. Smith PA (2014) BDNF: no gain without pain? Neuroscience 283:107–123. https://doi.org/10.1016/j.neuroscience.2014.05.044

    Article  CAS  PubMed  Google Scholar 

  48. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29(11):3518–3528. https://doi.org/10.1523/JNEUROSCI.5714-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 129(2):343–366. https://doi.org/10.1097/ALN.0000000000002130

    Article  PubMed  Google Scholar 

  50. Gu Y, Chen S, Mo Y, Tu Y, Chen N, Zhao X, Li S, Yu Q, Dai Q, Wang J (2020) Electroacupuncture Attenuates CFA-Induced Inflammatory Pain by Regulating CaMKII. Neural Plast 2020:8861994. https://doi.org/10.1155/2020/8861994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang RY, Zhu BF, Wang LK, Song Y, Zhao JG, Guo Y, Zhao L, Chen S (2020) Electroacupuncture alleviates inflammatory pain via adenosine suppression and its mediated substance P expression. Arq Neuropsiquiatr 78(10):617–623. https://doi.org/10.1590/0004-282X20200078

    Article  PubMed  Google Scholar 

  52. Zhao X, Liu L, Wang Y, Wang G, Zhao Y, Zhang Y (2019) Electroacupuncture enhances antioxidative signal pathway and attenuates neuropathic pain induced by chemotherapeutic paclitaxel. Physiol Res 68(3):501–510. https://doi.org/10.33549/physiolres.934084

    Article  CAS  PubMed  Google Scholar 

  53. Hu QQ, He XF, Ma YQ, Ma LQ, Qu SY, Wang HZ, Kang YR, Chen LH, Li X, Liu BY, Shao XM, Fang JF, Liang Y, Fang JQ, Jiang YL (2023) Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signal 19(1):29–41. https://doi.org/10.1007/s11302-022-09844-8

    Article  CAS  PubMed  Google Scholar 

  54. Lee JY, Choi HY, Park CS, Pyo MK, Yune TY, Kim GW, Chung SH (2019) GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats. J Ginseng Res 43(1):58–67. https://doi.org/10.1016/j.jgr.2017.08.004

    Article  PubMed  Google Scholar 

  55. Chen XM, Xu J, Song JG, Zheng BJ, Wang XR (2015) Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2X4 receptor in spinal microglia in a CCI rat model for neuropathic pain. Br J Anaesth 114(1):150–157. https://doi.org/10.1093/bja/aeu199

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (81804181 to X.F.H. and 81774389 to Y.L.J.), the Natural Science Foundation of Zhejiang Province of China (LY22H270006 to Y.L.J.), the Research Fund for Zhejiang Traditional Chinese Medicine University Affiliated Hospital (2022FSYYZZ09 to Y.L.J.), and the Key Laboratory of Acupuncture and Neurology of Zhejiang Province (2019E10011).

Author information

Authors and Affiliations

Authors

Contributions

X.H., J.F. and Y.J. conceived and designed the experiments. S.Q., H.W., Q.H., Y.K., X.L., L.C. and L.M. performed animal experiments. Q.H., Y.M., and L.M. performed western blotting experiments. S.Q. and H.W. performed immunofluorescence labeling experiments. B.L. and H.Z. performed data analysis. X.H., S.Q. and H.W. wrote the manuscript. X.S., Y.L., J.D. and B.L. performed revising. All authors reviewed and revised this manuscript and reviewed the final version of the manuscript.

Corresponding authors

Correspondence to Yong-liang Jiang, Jian-qiao Fang or Xiao-fen He.

Ethics declarations

Ethical approval

This study was permitted by The Animal Welfare Committee of Zhejiang Chinese Medical University (Approval number: IACUC-20190805-04). The institution agreed to participate and agreed to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article has been submitted in preprint (https://doi.org/10.21203/rs.3.rs-1613857/v1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Sy., Wang, Hz., Hu, Qq. et al. Electroacupuncture may alleviate diabetic neuropathic pain by inhibiting the microglia P2X4R and neuroinflammation. Purinergic Signalling (2023). https://doi.org/10.1007/s11302-023-09972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-023-09972-9

Keywords

Navigation