Skip to main content
Log in

Purinergic signaling in myocardial ischemia–reperfusion injury

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal transduction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial ischemia–reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversified pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic conditioning, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling mediates the complex processes of MIRI which shows its promising application and prospecting in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. GBD 2015 Mortality and Causes of Death Collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–1544. https://doi.org/10.1016/s0140-6736(16)31012-1

    Article  Google Scholar 

  2. Bernink FJ, Timmers L, Beek AM, Diamant M, Roos ST, Van Rossum AC, Appelman Y (2014) Progression in attenuating myocardial reperfusion injury: an overview. Int J Cardiol 170(3):261–269. https://doi.org/10.1016/j.ijcard.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  3. Hausenloy DJ, Yellon DM (2015) Targeting myocardial reperfusion injury–the search continues. N Engl J Med 373(11):1073–1075. https://doi.org/10.1056/NEJMe1509718

    Article  PubMed  Google Scholar 

  4. Moens AL, Claeys MJ, Timmermans JP, Vrints CJ (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100(2):179–190. https://doi.org/10.1016/j.ijcard.2004.04.013

    Article  CAS  PubMed  Google Scholar 

  5. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135. https://doi.org/10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581

    CAS  PubMed  Google Scholar 

  7. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  8. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  9. Laubach VE, French BA, Okusa MD (2011) Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets 15(1):103–118. https://doi.org/10.1517/14728222.2011.541441

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z, Xie N, Illes P, Virgilio FD, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang CH, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1):162. https://doi.org/10.1038/s41392-021-00553-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3):213–237. https://doi.org/10.1113/jphysiol.1929.sp002608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Headrick JP, Ashton KJ, Rose’meyer RB, Peart JN (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140(1):92–111. https://doi.org/10.1016/j.pharmthera.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  13. Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120(1):207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Z, Matsumoto T, Jankowski V, Pernow J, Mustafa SJ, Duncker DJ, Merkus D (2019) Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacol Res 141:32–45. https://doi.org/10.1016/j.phrs.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  15. Wernly B, Zhou Z (2020) More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol 319(4):H723–H729. https://doi.org/10.1152/ajpheart.00417.2020

    Article  CAS  PubMed  Google Scholar 

  16. Ralevic V (2021) Purinergic signalling in the cardiovascular system-a tribute to Geoffrey Burnstock. Purinergic Signal 17(1):63–69. https://doi.org/10.1007/s11302-020-09734-x

    Article  CAS  PubMed  Google Scholar 

  17. Ralevic V, Dunn WR (2015) Purinergic transmission in blood vessels. Auton Neurosci 191:48–66. https://doi.org/10.1016/j.autneu.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  18. Abbas ZSB, Latif ML, Dovlatova N, Fox SC, Heptinstall S, Dunn WR, Ralevic V (2018) UDP-sugars activate P2Y14 receptors to mediate vasoconstriction of the porcine coronary artery. Vascul Pharmacol 103–105:36–46. https://doi.org/10.1016/j.vph.2017.12.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66(1):102–192. https://doi.org/10.1124/pr.113.008029

    Article  CAS  PubMed  Google Scholar 

  20. Sadek HA, Nulton-Persson AC, Szweda PA, Szweda L (2003) Cardiac ischemia/reperfusion, aging, and redox-dependent alterations in mitochondrial function. Arch Biochem Biophys 420(2):201–208. https://doi.org/10.1016/j.abb.2003.09.029

    Article  CAS  PubMed  Google Scholar 

  21. Ely SW, Mentzer RM Jr, Lasley RD, Berne RM (1985) Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J Thorac Cardiovasc Surg 90(4):549–556

    Article  CAS  PubMed  Google Scholar 

  22. Ely SW, Berne RM (1992) Protective effects of adenosine in myocardial ischemia. Circulation 85(3):893–904. https://doi.org/10.1161/01.cir.85.3.893

    Article  CAS  PubMed  Google Scholar 

  23. Wyatt DA, Edmunds MC, Berne RM, Lasley RD, Mentzer RM Jr (1989) Adenosine stimulates glycolytic flux in isolated perfused rat hearts by A1-adenosine receptors. Am J Physiol 257(6 Pt 2):H1952-1957. https://doi.org/10.1152/ajpheart.1989.257.6.H1952

    Article  CAS  PubMed  Google Scholar 

  24. Mainwaring R, Lasley R, Rubio R, Wyatt DA, Mentzer RM Jr (1988) Adenosine stimulates glucose uptake in the isolated rat heart. Surgery 103(4):445–449

    CAS  PubMed  Google Scholar 

  25. Headrick JP, Gauthier NS, Berr SS, Morrison RR, Matherne GP (1998) Transgenic A1 adenosine receptor overexpression markedly improves myocardial energy state during ischemia-reperfusion. J Mol Cell Cardiol 30(5):1059–1064. https://doi.org/10.1006/jmcc.1998.0672

    Article  CAS  PubMed  Google Scholar 

  26. Pomerantz BJ, Robinson TN, Morrell TD, Heimbach JK, Banerjee A, Harken AH (2000) Selective mitochondrial adenosine triphosphate-sensitive potassium channel activation is sufficient to precondition human myocardium. J Thorac Cardiovasc Surg 120(2):387–392. https://doi.org/10.1067/mtc.2000.107521

    Article  CAS  PubMed  Google Scholar 

  27. Cerniway RJ, Morrison RR, Byford AM, Lankford AR, Headrick JP, Van Wylen DG, Matherne GP (2002) A1 adenosine receptor overexpression decreases stunning from anoxia-reoxygenation: role of the mitochondrial K(ATP) channel. Basic Res Cardiol 97(3):232–238. https://doi.org/10.1007/s003950200016

    Article  CAS  PubMed  Google Scholar 

  28. Miura T, Liu Y, Kita H, Ogawa T, Shimamoto K (2000) Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation. J Am Coll Cardiol 35(1):238–245. https://doi.org/10.1016/s0735-1097(99)00493-3

    Article  CAS  PubMed  Google Scholar 

  29. Leung CH, Wang LX, Nielsen JM, Tropak MB, Fu YY, Kato H, Callahan J, Redington AN, Caldarone CA (2014) Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation. Cardiovasc Drugs Ther 28(1):7–17. https://doi.org/10.1007/s10557-013-6489-2

    Article  CAS  PubMed  Google Scholar 

  30. Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A, Harken A (1997) Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol 29(1):175–182. https://doi.org/10.1006/jmcc.1996.0262

    Article  CAS  PubMed  Google Scholar 

  31. Headrick JP, Gauthier NS, Morrison R, Matherne GP (2000) Cardioprotection by K(ATP) channels in wild-type hearts and hearts overexpressing A(1)-adenosine receptors. Am J Physiol Heart Circ Physiol 279(4):H1690-1697. https://doi.org/10.1152/ajpheart.2000.279.4.H1690

    Article  CAS  PubMed  Google Scholar 

  32. Thourani VH, Nakamura M, Ronson RS, Jordan JE, Zhao ZQ, Levy JH, Szlam F, Guyton RA, Vinten-Johansen J (1999) Adenosine A(3)-receptor stimulation attenuates postischemic dysfunction through K(ATP) channels. Am J Physiol 277(1):H228-235. https://doi.org/10.1152/ajpheart.1999.277.1.H228

    Article  CAS  PubMed  Google Scholar 

  33. Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ (1998) Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5’-N-methylcarboxamidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc Res 40(1):138–145. https://doi.org/10.1016/s0008-6363(98)00112-6

    Article  CAS  PubMed  Google Scholar 

  34. Zhao TC, Kukreja RC (2002) Late preconditioning elicited by activation of adenosine A(3) receptor in heart: role of NF- kappa B, iNOS and mitochondrial K(ATP) channel. J Mol Cell Cardiol 34(3):263–277. https://doi.org/10.1006/jmcc.2001.1510

    Article  CAS  PubMed  Google Scholar 

  35. Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC (2000) Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation 102(8):902–907. https://doi.org/10.1161/01.cir.102.8.902

    Article  CAS  PubMed  Google Scholar 

  36. Benoist L, Chadet S, Genet T, Lefort C, Heraud A, Danila MD, Muntean DM, Baron C, Angoulvant D, Babuty D, Bourguignon T, Ivanes F (2019) Stimulation of P2Y11 receptor protects human cardiomyocytes against hypoxia/reoxygenation injury and involves PKCε signaling pathway. Sci Rep 9(1):11613. https://doi.org/10.1038/s41598-019-48006-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen Z, He L, Li L, Chen L (2018) The P2X7 purinergic receptor: an emerging therapeutic target in cardiovascular diseases. Clin Chim Acta 479:196–207. https://doi.org/10.1016/j.cca.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  38. Zucchi R, Cerniway RJ, Ronca-Testoni S, Morrison RR, Ronca G, Matherne GP (2002) Effect of cardiac A(1) adenosine receptor overexpression on sarcoplasmic reticulum function. Cardiovasc Res 53(2):326–333. https://doi.org/10.1016/s0008-6363(01)00471-0

    Article  CAS  PubMed  Google Scholar 

  39. Zucchi R, Yu G, Ghelardoni S, Ronca F, Ronca-Testoni S (2001) A3 adenosine receptor stimulation modulates sarcoplasmic reticulum Ca(2+) release in rat heart. Cardiovasc Res 50(1):56–64. https://doi.org/10.1016/s0008-6363(00)00318-7

    Article  CAS  PubMed  Google Scholar 

  40. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85(4):1150–1157. https://doi.org/10.1172/JCI114547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Z, Cernniway RJ, Byford AM, Berr SS, French BA, Matherne GP (2002) Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol Heart Circ Physiol 282(3):H949-955. https://doi.org/10.1152/ajpheart.00741.2001

    Article  CAS  PubMed  Google Scholar 

  42. Jordan JE, Thourani VH, Auchampach JA, Robinson JA, Wang NP, Vinten-Johansen J (1999) A(3) adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. Am J Physiol 277(5):H1895-1905. https://doi.org/10.1152/ajpheart.1999.277.5.H1895

    Article  CAS  PubMed  Google Scholar 

  43. Cerniway RJ, Yang Z, Jacobson MA, Linden J, Matherne GP (2001) Targeted deletion of A(3) adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am J Physiol Heart Circ Physiol 281(4):H1751-1758. https://doi.org/10.1152/ajpheart.2001.281.4.H1751

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795. https://doi.org/10.1126/science.1132559

    Article  CAS  PubMed  Google Scholar 

  45. Borg N, Alter C, Görldt N, Jacoby C, Ding Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, Flögel U, Schrader J (2017) CD73 on T Cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136(3):297–313. https://doi.org/10.1161/CIRCULATIONAHA.116.023365

    Article  CAS  PubMed  Google Scholar 

  46. Boros D, Thompson J, Larson DF (2016) Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion 31(2):103–110. https://doi.org/10.1177/0267659115586579

    Article  CAS  PubMed  Google Scholar 

  47. Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114(2):208–221. https://doi.org/10.1016/j.pharmthera.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  48. Wu Y, Zhang Y, Zhang J, Zhai T, Hu J, Luo H, Zhou H, Zhang Q, Zhou Z, Liu F (2020) Cathelicidin aggravates myocardial ischemia/reperfusion injury via activating TLR4 signaling and P2X7R/NLRP3 inflammasome. J Mol Cell Cardiol 139:75–86. https://doi.org/10.1016/j.yjmcc.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  49. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6):594–604. https://doi.org/10.1161/CIRCULATIONAHA.110.982777

    Article  CAS  PubMed  Google Scholar 

  50. Sandanger Ø, Ranheim T, Vinge LE, Bliksøen AK, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99(1):164–174. https://doi.org/10.1093/cvr/cvt091

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X (2021) P2X7 receptor-mediated inflammation in cardiovascular disease. Front Pharmacol 12:654425. https://doi.org/10.3389/fphar.2021.654425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vessey DA, Li L, Kelley M (2010) Pannexin-I/P2X7 purinergic receptor channels mediate the release of cardioprotectants induced by ischemic pre- and postconditioning. J Cardiovasc Pharmacol Ther 15(2):190–195. https://doi.org/10.1177/1074248409360356

    Article  CAS  PubMed  Google Scholar 

  53. Vessey DA, Li L, Kelley M (2011) P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2X7 channels. Am J Physiol Heart Circ Physiol 301(3):H881-887. https://doi.org/10.1152/ajpheart.00305.2011

    Article  CAS  PubMed  Google Scholar 

  54. Vessey DA, Li L, Kelley M (2011) Ischemic preconditioning requires opening of pannexin-1/P2X(7) channels not only during preconditioning but again after index ischemia at full reperfusion. Mol Cell Biochem 351(1–2):77–84. https://doi.org/10.1007/s11010-011-0713-9

    Article  CAS  PubMed  Google Scholar 

  55. Chadet S, Ivanes F, Benoist L, Salmon-Gandonnière C, Guibon R, Velge-Roussel F, Babuty D, Baron C, Roger S, Angoulvant D (2015) Hypoxia/reoxygenation inhibits P2Y11 receptor expression and its immunosuppressive activity in human dendritic cells. J Immunol 195(2):651–660. https://doi.org/10.4049/jimmunol.1500197

    Article  CAS  PubMed  Google Scholar 

  56. Lefort C, Benoist L, Chadet S, Piollet M, Heraud A, Babuty D, Baron C, Ivanes F, Angoulvant D (2018) Stimulation of P2Y11 receptor modulates cardiac fibroblasts secretome toward immunomodulatory and protective roles after hypoxia/reoxygenation injury. J Mol Cell Cardiol 121:212–222. https://doi.org/10.1016/j.yjmcc.2018.07.245

    Article  CAS  PubMed  Google Scholar 

  57. Wang L, Li N, Wang F, Cui L (2021) P2Y12 inhibition in macrophages reduces ventricular arrhythmias in rats after myocardial ischemia-reperfusion. Adv Clin Exp Med 30(4):413–420. https://doi.org/10.17219/acem/133139

    Article  PubMed  Google Scholar 

  58. Ziegler M, Wang X, Peter K (2019) Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res 115(7):1178–1188. https://doi.org/10.1093/cvr/cvz070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Patti G, Micieli G, Cimminiello C, Bolognese L (2020) The role of clopidogrel in 2020: a reappraisal. Cardiovasc Ther 2020:8703627. https://doi.org/10.1155/2020/8703627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yokota T, Higuma T, Endo T, Nishizaki F, Hanada K, Yokoyama H, Yamada M, Okumura K, Tomita H (2018) Prasugrel versus clopidogrel for residual thrombus burden in patients with ST-segment elevation myocardial infarction: an optical coherence tomography study. Coron Artery Dis 29(8):663–669. https://doi.org/10.1097/mca.0000000000000663

    Article  PubMed  Google Scholar 

  61. Pandit A, Aryal MR, Pandit AA, Jalota L, Hakim FA, Mookadam F, Lee HR, Tleyjeh IM (2014) Cangrelor versus clopidogrel in percutaneous coronary intervention: a systematic review and meta-analysis. EuroIntervention 9(11):1350–1358. https://doi.org/10.4244/eijv9I11A226

    Article  PubMed  Google Scholar 

  62. Barrabés JA, Inserte J, Mirabet M, Quiroga A, Hernando V, Figueras J, Garcia-Dorado D (2010) Antagonism of P2Y12 or GPIIb/IIIa receptors reduces platelet-mediated myocardial injury after ischaemia and reperfusion in isolated rat hearts. Thromb Haemost 104(1):128–135. https://doi.org/10.1160/TH09-07-0440

    Article  CAS  PubMed  Google Scholar 

  63. Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y (2015) Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol 35(8):1805–1814. https://doi.org/10.1161/ARVBAHA.115.305655

    Article  CAS  PubMed  Google Scholar 

  64. Gimbel M, Qaderdan K, Willemsen L, Hermanides R, Bergmeijer T, Very E, Heestermans T, Gin MTJ, Waalewijn R, Hofma S, Hartog F, Jukema W, Birgelen C, Voskuil M, Kelder J, Deneer V, Berg JT (2020) Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, open-label, non-inferiority trial. Lancet 395(10233):1374–1381. https://doi.org/10.1016/S0140-6736(20)30325-1

    Article  CAS  PubMed  Google Scholar 

  65. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA, Investigators P, Freij A, Thórsen M (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11):1045–1057. https://doi.org/10.1056/NEJMoa0904327

    Article  CAS  PubMed  Google Scholar 

  66. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, Servi SD, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357(20):2001–2015. https://doi.org/10.1056/NEJMoa0706482

    Article  CAS  PubMed  Google Scholar 

  67. Bell RM, Sivaraman V, Kunuthur SP, Cohen MV, Downey JM, Yellon DM (2015) Cardioprotective properties of the platelet P2Y12 receptor inhibitor, Cangrelor: protective in diabetics and reliant upon the presence of blood. Cardiovasc Drugs Ther 29(5):415–418. https://doi.org/10.1007/s10557-015-6609-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen MV, Yang XM, White J, Yellon DM, Bell RM, Downey JM (2016) Cangrelor-mediated cardioprotection requires platelets and sphingosine phosphorylation. Cardiovasc Drugs Ther 30(2):229–232. https://doi.org/10.1007/s10557-015-6633-2

    Article  CAS  PubMed  Google Scholar 

  69. Dost T (2020) Cardioprotective properties of the platelet P2Y(12) receptor inhibitor prasugrel on cardiac ischemia/reperfusion injury. Pharmacol Rep 72(3):672–679. https://doi.org/10.1007/s43440-019-00046-5

    Article  CAS  PubMed  Google Scholar 

  70. Aungraheeta R, Conibear A, Butler M, Kelly E, Nylander S, Mumford A, Mundell SJ (2016) Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor. Blood 128(23):2717–2728. https://doi.org/10.1182/blood-2016-03-707844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Armstrong D, Summers C, Ewart L, Nylander S, Sidaway JE, Giezen J (2014) Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. J Cardiovasc Pharmacol Ther 19(2):209–219. https://doi.org/10.1177/1074248413511693

    Article  CAS  PubMed  Google Scholar 

  72. Zatta AJ, Matherne GP, Headrick JP (2006) Adenosine receptor-mediated coronary vascular protection in post-ischemic mouse heart. Life Sci 78(21):2426–2437. https://doi.org/10.1016/j.lfs.2005.09.035

    Article  CAS  PubMed  Google Scholar 

  73. Huang CH, Kim SJ, Ghaleh B, Kudej RK, Shen YT, Bishop SP, Vatner SF (1999) An adenosine agonist and preconditioning shift the distribution of myocardial blood flow in conscious pigs. Am J Physiol 276(2):H368-375. https://doi.org/10.1152/ajpheart.1999.276.2.H368

    Article  CAS  PubMed  Google Scholar 

  74. Cox BF, Greenland BD, Perrone MH, Merkel LA (1994) Ischaemia/reperfusion selectively attenuates coronary vasodilatation to an adenosine A2- but not to an A1-agonist in the dog. Br J Pharmacol 111:1233–1239. https://doi.org/10.1111/j.1476-5381.1994.tb14877.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou Z, de Wijs-Meijler D, Lankhuizen I, Jankowski J, Jankowski V, Jan Danser AH, Duncker DJ, Merkus D (2013) Blunted coronary vasodilator response to uridine adenosine tetraphosphate in post-infarct remodeled myocardium is due to reduced P1 receptor activation. Pharmacol Res 77:22–29. https://doi.org/10.1016/j.phrs.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z (2021) Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 116(1):22. https://doi.org/10.1007/s00395-021-00859-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gündüz D, Kasseckert SA, Härtel FV, Aslam M, Abdallah Y, Schäfer M, Piper HM, Noll T, Schäfer C (2006) Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells. Cardiovasc Res 71(4):764–773. https://doi.org/10.1016/j.cardiores.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  78. García-Villalón ÁL, Granado M, Monge L, Fernández N, Carreño-Tarragona G, Amor S (2014) Purinergic component in the coronary vasodilatation to acetylcholine after ischemia-reperfusion in perfused rat hearts. J Vasc Res 51(4):283–289. https://doi.org/10.1159/000365928

    Article  CAS  PubMed  Google Scholar 

  79. Kristiansen SB, Skovsted GF, Berchtold LA, Radziwon-Balicka A, Dreisig K, Edvinsson L, Sheykhzade M, Haanes KA (2018) Role of pannexin and adenosine triphosphate (ATP) following myocardial ischemia/reperfusion. Scand Cardiovasc J 52(6):340–343. https://doi.org/10.1080/14017431.2018.1552793

    Article  CAS  PubMed  Google Scholar 

  80. Yetgin T, Uitterdijk A, Hekkert MTL, Merkus D, Krabbendam-Peters I, Beusekom HMM, Falotico R, Serruys P, Manintveld OC, Geuns RJM, Zijlstra F, Duncker DJ (2015) Limitation of infarct size and no-reflow by intracoronary adenosine depends critically on dose and duration. JACC Cardiovasc Interv 8(15):1990–1999. https://doi.org/10.1016/j.jcin.2015.08.033

    Article  PubMed  Google Scholar 

  81. Bulluck H, Sirker A, Loke YK, Garcia-Dorado D, Hausenloy DJ (2016) Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int J Cardiol 202:228–237. https://doi.org/10.1016/j.ijcard.2015.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morrison RR, Jones R, Byford AM, Stell AR, Peart J, Headrick JP, Matherne GP (2000) Transgenic overexpression of cardiac A(1) adenosine receptors mimics ischemic preconditioning. Am J Physiol Heart Circ Physiol 279(3):H1071-1078. https://doi.org/10.1152/ajpheart.2000.279.3.H1071

    Article  CAS  PubMed  Google Scholar 

  83. Crawford M, Ford S, Henry M, Matherne GP, Lankford A (2005) Myocardial function following cold ischemic storage is improved by cardiac-specific overexpression of A1-adenosine receptors. Can J Physiol Pharmacol 83(6):493–498. https://doi.org/10.1139/y05-038

    Article  CAS  PubMed  Google Scholar 

  84. Regan SE, Broad M, Byford AM, Lankford AR, Cerniway RJ, Mayo MW, Matherne GP (2003) A1 adenosine receptor overexpression attenuates ischemia-reperfusion-induced apoptosis and caspase 3 activity. Am J Physiol Heart Circ Physiol 284(3):H859-866. https://doi.org/10.1152/ajpheart.00251.2002

    Article  CAS  PubMed  Google Scholar 

  85. Zhao ZQ, Budde JM, Morris C, Wang NP, Velez DA, Muraki S, Guyton RA, Vinten-Johansen J (2001) Adenosine attenuates reperfusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J Mol Cell Cardiol 33(1):57–68. https://doi.org/10.1006/jmcc.2000.1275

    Article  CAS  PubMed  Google Scholar 

  86. Granado M, Amor S, Montoya JJ, Monge L, Fernández N, García-Villalón AL (2015) Altered expression of P2Y2 and P2X7 purinergic receptors in the isolated rat heart mediates ischemia-reperfusion injury. Vascul Pharmacol 73:96–103. https://doi.org/10.1016/j.vph.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  87. Bourguignon T, Benoist L, Chadet S, Miquelestorena-Standley E, Fromont G, Ivanes F, Angoulvant D (2019) Stimulation of murine P2Y11-like purinoreceptor protects against hypoxia/reoxygenation injury and decreases heart graft rejection lesions. J Thorac Cardiovasc Surg 158(3):780-790.e1. https://doi.org/10.1016/j.jtcvs.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  88. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136. https://doi.org/10.1161/01.cir.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  89. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB (1986) Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251(6 Pt 2):H1306-1315. https://doi.org/10.1152/ajpheart.1986.251.6.H1306

    Article  CAS  PubMed  Google Scholar 

  90. Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88(3):1264–1272. https://doi.org/10.1161/01.cir.88.3.1264

    Article  CAS  PubMed  Google Scholar 

  91. Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS (1998) Ischaemic preconditioning: present position and future directions. Cardiovasc Res 37(1):21–33. https://doi.org/10.1016/s0008-6363(97)00214-9

    Article  CAS  PubMed  Google Scholar 

  92. Mullane K, Bullough D (1995) Harnessing an endogenous cardioprotective mechanism: cellular sources and sites of action of adenosine. J Mol Cell Cardiol 27(4):1041–1054. https://doi.org/10.1016/0022-2828(95)90073-x

    Article  CAS  PubMed  Google Scholar 

  93. Auchampach JA, Gross GJ (1993) Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol 264(5 Pt 2):H1327-1336. https://doi.org/10.1152/ajpheart.1993.264.5.H1327

    Article  CAS  PubMed  Google Scholar 

  94. Schulz R, Rose J, Post H, Heusch G (1995) Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflugers Arch 430(2):273–282. https://doi.org/10.1007/BF00374659

    Article  CAS  PubMed  Google Scholar 

  95. Walker DM, Walker JM, Pugsley WB, Pattison CW, Yellon DM (1995) Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol 27(6):1349–1357. https://doi.org/10.1016/s0022-2828(05)82397-1

    Article  CAS  PubMed  Google Scholar 

  96. McCully JD, Toyoda Y, Uematsu M, Stewart RD, Levitsky S (2001) Adenosine-enhanced ischemic preconditioning: adenosine receptor involvement during ischemia and reperfusion. Am J Physiol Heart Circ Physiol 280(2):H591-602. https://doi.org/10.1152/ajpheart.2001.280.2.H591

    Article  CAS  PubMed  Google Scholar 

  97. Toyoda Y, Friehs I, Parker RA, Levitsky S, McCully JD (2000) Differential role of sarcolemmal and mitochondrial K(ATP) channels in adenosine-enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol 279(6):H2694-2703. https://doi.org/10.1152/ajpheart.2000.279.6.H2694

    Article  CAS  PubMed  Google Scholar 

  98. Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103(3):203–215. https://doi.org/10.1007/s00395-007-0687-7

    Article  CAS  PubMed  Google Scholar 

  99. Mubagwa K, Flameng W (2001) Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res 52(1):25–39. https://doi.org/10.1016/s0008-6363(01)00358-3

    Article  CAS  PubMed  Google Scholar 

  100. Giannella E, Mochmann HC, Levi R (1997) Ischemic preconditioning prevents the impairment of hypoxic coronary vasodilatation caused by ischemia/reperfusion: role of adenosine A1/A3 and bradykinin B2 receptor activation. Circ Res 81(3):415–422. https://doi.org/10.1161/01.res.81.3.415

    Article  CAS  PubMed  Google Scholar 

  101. Guo Y, Bolli R, Bao W, Wu WJ, Black RG Jr, Murphree SS, Salvatore CA, Jacobson MA, Auchampach JA (2001) Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J Mol Cell Cardiol 33(4):825–830. https://doi.org/10.1006/jmcc.2001.1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vinten-Johansen J, Thourani VH, Ronson RS, Jordan JE, Zhao ZQ, Nakamura M, Velez D, Guyton RA (1999) Broad-spectrum cardioprotection with adenosine. Ann Thorac Surg 68(5):1942–1948. https://doi.org/10.1016/s0003-4975(99)01018-8

    Article  CAS  PubMed  Google Scholar 

  103. Downey JM, Davis AM, Cohen MV (2007) Signaling pathways in ischemic preconditioning. Heart Fail Rev 12(3–4):181–188. https://doi.org/10.1007/s10741-007-9025-2

    Article  CAS  PubMed  Google Scholar 

  104. Tian Y, Piras BA, Kron IL, French BA, Yang Z (2015) Adenosine 2B receptor activation reduces myocardial reperfusion injury by promoting anti-inflammatory macrophages differentiation via PI3K/Akt pathway. Oxid Med Cell Longev 2015: 585297https://doi.org/10.1155/2015/585297

  105. Reid EA, Kristo G, Yoshimura Y, Ballard-Croft C, Keith BJ, Mentzer RM Jr, Lasley RD (2005) In vivo adenosine receptor preconditioning reduces myocardial infarct size via subcellular ERK signaling. Am J Physiol Heart Circ Physiol 288(5):H2253-2259. https://doi.org/10.1152/ajpheart.01009.2004

    Article  CAS  PubMed  Google Scholar 

  106. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899. https://doi.org/10.1161/01.cir.87.3.893

    Article  CAS  PubMed  Google Scholar 

  107. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579-588. https://doi.org/10.1152/ajpheart.01064.2002

    Article  CAS  PubMed  Google Scholar 

  108. Hausenloy DJ, Iliodromitis EK, Andreadou I, Papalois A, Gritsopoulos G, Anastasiou-Nana M, Kremastinos DT, Yellon DM (2012) Investigating the signal transduction pathways underlying remote ischemic conditioning in the porcine heart. Cardiovasc Drugs Ther 26(2):87–93. https://doi.org/10.1007/s10557-011-6364-y

    Article  CAS  PubMed  Google Scholar 

  109. Cohen MV, Downey JM (2011) Ischemic postconditioning: from receptor to end-effector. Antioxid Redox Signal 14(5):821–831. https://doi.org/10.1089/ars.2010.3318

    Article  CAS  PubMed  Google Scholar 

  110. Tscharre M, Egger F, Machata M, Rohla M, Michael N, Neumayr M, Zweiker R, Hajos J, Adlbrecht C, Suppan M, Helmreich W, Eber B, Huber K, Weiss TW (2017) Contemporary use of P2Y12-inhibitors in patients with acute coronary syndrome undergoing percutaneous coronary intervention in Austria: a prospective, multi-centre registry. PLoS One 12(6):e0179349. https://doi.org/10.1371/journal.pone.0179349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li J, Conrad C, Mills TW, Berg NK, Kim B, Ruan W, Lee JW, Zhang X, Yuan X, Eltzschig HK (2021) PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J Exp Med 218(6):e20210008. https://doi.org/10.1084/jem.20210008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ihara M, Asanuma H, Yamazaki S, Kato H, Asano Y, Shinozaki Y, Mori H, Minamino T, Asakura M, Sugimachi M, Mochizuki N, Kitakaze M (2015) An interaction between glucagon-like peptide-1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 308(10):H1287-1297. https://doi.org/10.1152/ajpheart.00835.2014

    Article  CAS  PubMed  Google Scholar 

  113. Millart H, Alouane L, Oszust F, Chevallier S, Robinet A (2009) Involvement of P2Y receptors in pyridoxal-5’-phosphate-induced cardiac preconditioning. Fundam Clin Pharmacol 23(3):279–292. https://doi.org/10.1111/j.1472-8206.2009.00677.x

    Article  CAS  PubMed  Google Scholar 

  114. Dhalla NS, Takeda S, Elimban V (2013) Mechanisms of the beneficial effects of vitamin B6 and pyridoxal 5-phosphate on cardiac performance in ischemic heart disease. Clin Chem Lab Med 51(3):535–543. https://doi.org/10.1515/cclm-2012-0553

    Article  CAS  PubMed  Google Scholar 

  115. Tang Y, Wang Y, Park KM, Hu Q, Teoh JP, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G, Kim IM (2015) MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106(3):387–397. https://doi.org/10.1093/cvr/cvv121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Paiva M, Riksen NP, Davidson SM, Hausenloy DJ, Monteiro P, Goncalves L, Providência L, Rongen GA, Smits P, Mocanu MM, Yellon DM (2009) Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol 53(5):373–378. https://doi.org/10.1097/FJC.0b013e31819fd4e7

    Article  CAS  PubMed  Google Scholar 

  117. Bai Y, Muqier MH, Iwasa M, Sumi S, Yamada Y, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Uno B, Minatoguchi S (2011) Cilostazol protects the heart against ischaemia reperfusion injury in a rabbit model of myocardial infarction: focus on adenosine, nitric oxide and mitochondrial ATP-sensitive potassium channels. Clin Exp Pharmacol Physiol 38(10):658–665. https://doi.org/10.1111/j.1440-1681.2011.05550.x

    Article  CAS  PubMed  Google Scholar 

  118. Figueredo VM, Diamond I, Zhou HZ, Camacho SA (1999) Chronic dipyridamole therapy produces sustained protection against cardiac ischemia-reperfusion injury. Am J Physiol 277(5):H2091-2097. https://doi.org/10.1152/ajpheart.1999.277.5.H2091

    Article  CAS  PubMed  Google Scholar 

  119. Yao L, Wong GTC, Xia ZY, Irwin MG (2011) Interaction between spinal opioid and adenosine receptors in remote cardiac preconditioning: effect of intrathecal morphine. J Cardiothorac Vasc Anesth 25(3):444–448. https://doi.org/10.1053/j.jvca.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  120. Ha JY, Lee YC, Park SJ, Jang YH, Kim JH (2015) Remifentanil postconditioning has cross talk with adenosine receptors in the ischemic-reperfused rat heart. J Surg Res 195(1):37–43. https://doi.org/10.1016/j.jss.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  121. Peart JN, Gross GJ (2003) Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. Am J Physiol Heart Circ Physiol 285(1):H81-89. https://doi.org/10.1152/ajpheart.00985.2002

    Article  CAS  PubMed  Google Scholar 

  122. Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y (2016) Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther 30(6):539–550. https://doi.org/10.1007/s10557-016-6701-2

    Article  CAS  PubMed  Google Scholar 

  123. Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O’Donnell K, Cohen MV, Downey JM, Alvarez DF (2018) Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 113(5):32. https://doi.org/10.1007/s00395-018-0692-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kristo G, Yoshimura Y, Ferraris SP, Jahania SA, Mentzer RM Jr, Lasley RD (2004) The preischemic combination of the sodium-hydrogen exchanger inhibitor cariporide and the adenosine agonist AMP579 acts additively to reduce porcine myocardial infarct size. J Am Coll Surg 199(4):586–594. https://doi.org/10.1016/j.jamcollsurg.2004.05.274

    Article  PubMed  Google Scholar 

  125. Yang XM, Cui L, Alhammouri A, Downey JM, Cohen MV (2013) Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc Drugs Ther 27(5):403–412. https://doi.org/10.1007/s10557-013-6474-9

    Article  CAS  PubMed  Google Scholar 

  126. Yan XF, Zhang ZM, Yao HY, Guan Y, Zhu JP, Zhang LH, Jia YL, Wang RW (2013) Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytother Res 27(11):1597–1604. https://doi.org/10.1002/ptr.4899

    Article  PubMed  Google Scholar 

  127. Bradamante S, Barenghi L, Piccinini F, Bertelli AAE, Jonge RD, Beemster P, Jong JWD (2003) Resveratrol provides late-phase cardioprotection by means of a nitric oxide- and adenosine-mediated mechanism. Eur J Pharmacol 465(1–2):115–123. https://doi.org/10.1016/s0014-2999(03)01441-9

    Article  CAS  PubMed  Google Scholar 

  128. Ye Y, Abu Said GH, Lin Y, Manickavasagam S, Hughes MG, McAdoo DJ, Perez-Polo RJ, Birnbaum Y (2008) Caffeinated coffee blunts the myocardial protective effects of statins against ischemia-reperfusion injury in the rat. Cardiovasc Drugs Ther 22(4):275–282. https://doi.org/10.1007/s10557-008-6105-z

    Article  CAS  PubMed  Google Scholar 

  129. Miyamae M, Diamond I, Weiner MW, Camacho SA, Figueredo VM (1997) Regular alcohol consumption mimics cardiac preconditioning by protecting against ischemia-reperfusion injury. Proc Natl Acad Sci U S A 94(7):3235–3239. https://doi.org/10.1073/pnas.94.7.3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ishibashi Y, Duncker DJ, Zhang J, Bache RJ (1998) ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82(3):346–359. https://doi.org/10.1161/01.res.82.3.346

    Article  CAS  PubMed  Google Scholar 

  131. Chen X, Li H, Wang K, Liang X, Wang W, Hu X, Huang Z, Wang Y (2019) Aerobic exercise ameliorates myocardial inflammation, fibrosis and apoptosis in high-fat-diet rats by inhibiting P2X7 purinergic receptors. Front Physiol 10:1286. https://doi.org/10.3389/fphys.2019.01286

    Article  PubMed  PubMed Central  Google Scholar 

  132. Xiao Y, Chen W, Zhong Z, Ding L, Bai H, Chen H, Zhang H, Gu Y, Lu S (2020) Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 127:110148. https://doi.org/10.1016/j.biopha.2020.110148

    Article  CAS  PubMed  Google Scholar 

  133. Xiao N, Li Y, Shao ML, Cui HF, Zhang CY, Kong SP, Zhang X, Yu HJ, Tan QW (2020) Jiaji (EX-B2)-based electroacupuncture preconditioning attenuates early ischaemia reperfusion injury in the rat myocardium. Evid Based Complement Alternat Med 2020: 8854033https://doi.org/10.1155/2020/8854033

  134. Burnstock G (2009) Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Med Hypotheses 73(4):470–472. https://doi.org/10.1016/j.mehy.2009.05.031

    Article  CAS  PubMed  Google Scholar 

  135. Lv ZY, Yang YQ, Yin LM (2021) Role of purinergic signaling in acupuncture therapeutics. Am J Chin Med 49(3):645–659. https://doi.org/10.1142/s0192415x21500294

    Article  CAS  PubMed  Google Scholar 

  136. Tang Y, Illes P (2021) Tribute to Prof. Geoffrey Burnstock: his contribution to acupuncture. Purinergic Signal 17(1):71–77. https://doi.org/10.1007/s11302-020-09729-8

    Article  CAS  PubMed  Google Scholar 

  137. Dai QF, Wang YY, Liu Q, Xin JJ, Lu FY, Cui JJ, Wu SY, Zhou C, Zhao YX, Gao JH, Yu XC (2018) A potential role of adenosine A2b receptor in mediating acupuncture pretreatment induced cardioprotection via influencing intracellular calcium regulator. Zhen Ci Yan Jiu 43(9):576–580. https://doi.org/10.13702/j.1000-0607.180089

    Article  PubMed  Google Scholar 

  138. Ren Y, Chen Z, Wang R, Yu Y, Li D, He Y (2020) Electroacupuncture improves myocardial ischemia injury via activation of adenosine receptors. Purinergic Signal 16(3):337–345. https://doi.org/10.1007/s11302-020-09704-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lu S, Tang Y, Ding Y, Yu M, Fu S, Zhu B (2018) Effects of electroacupuncture on the expression of adenosine receptors in the heart tissue of myocardial ischemia rats. Zhongguo Zhen Jiu 38(2):173–179. https://doi.org/10.13703/j.0255-2930.2018.02.019

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81774210), “Six Major Talent Summit” of Jiangsu Province (YY-033), “Qing Lan Project” of Jiangsu Province (2020), and Acupuncture & Chronobiology Key Laboratory of Sichuan Province (No. 2021005).

Author information

Authors and Affiliations

Authors

Contributions

Yi Zhuang, Mei-ling Yu, and Sheng-feng Lu discussed the concepts, contributed to literature and analysis, and wrote the manuscript.

Corresponding author

Correspondence to Sheng-feng Lu.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Yu, Ml. & Lu, Sf. Purinergic signaling in myocardial ischemia–reperfusion injury. Purinergic Signalling 19, 229–243 (2023). https://doi.org/10.1007/s11302-022-09856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09856-4

Keywords

Navigation